Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-29T02:20:30.244Z Has data issue: false hasContentIssue false

A community-level test of the Mesozoic marine revolution theory

Published online by Cambridge University Press:  08 April 2016

Richard B. Aronson*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560

Abstract

The Mesozoic marine revolution theory postulates a causal connection between the Cretaceous radiations of durophagous predators and the decline of suspension-feeding echinoderms in shallow-water habitats. In order to test the temporal distribution of dense ophiuroid populations for such a decline, I present a method of calculating the expected distribution of populations or communities in different geologic timespans. This statistical null hypothesis may then be compared with data from the fossil record to draw paleoecological inferences. The model takes into account the relative lengths of time blocks, the decay of sedimentary rock, and changes in shallow sea area through time. Although mass extinctions did not cause the immediate disappearance of shallow-water “brittlestar beds,” brittlestar beds show a significant decline in the Early Cretaceous. Results of several studies suggest that predators were at least partially responsible for reducing the distribution of dense ophiuroid populations.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allman, . 1863. On a new fossil ophiuridan, from Post-Pliocene strata of the valley of the Forth. Proceedings of the Royal Society of Edinburgh 5:101104.Google Scholar
Aronson, R. B. 1987. Predation on fossil and Recent ophiuroids. Paleobiology 13:187192.Google Scholar
Aronson, R. B.In press. Brittlestar beds: low-predation anachronisms in the British Isles. Ecology.Google Scholar
Aronson, R. B and Harms, C. A. 1985. Ophiuroids in a Bahamian salt water lake: the ecology of a Paleozoic-like community. Ecology 66:14721483.Google Scholar
Aronson, R. B., and Sues, H.-D. 1987. The paleoecological significance of an anachronistic ophiuroid community. Pp. 355366. In Kerfoot, W. C., and Sih, A. (eds.), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England; Hanover, New Hampshire.Google Scholar
Aronson, R. B., and Sues, H.-D. 1988. The fossil record of brittlestar beds. Pp. 147148. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference. A. A. Balkema; Rotterdam.Google Scholar
Behrensmeyer, A. K., and Kidwell, S. M. 1985. Taphonomy's contributions to paleobiology. Paleobiology 11:105119.Google Scholar
Blatt, H., and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic and sedimentary rock. Geological Society of America Bulletin 86:10851088.Google Scholar
Brandt, D. S. 1986. Preservation of event beds through time. Palaios 1:9296.CrossRefGoogle Scholar
Dacey, M. F., and Lehrman, A. 1983. Sediment growth and aging as Markov chains. Journal of Geology 91:573590.CrossRefGoogle Scholar
Dietl, G., and Mundlos, R. 1972. Ökologie und Biostratinomie von Ophiopinna elegans aus dem Untercallovium von La Voulte (Südfrankreich). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1972:449464.Google Scholar
Emlen, J. M. 1973. Ecology: An Evolutionary Approach. Addison-Wesley Publishing Company; Reading, Massachusetts.Google Scholar
Flessa, K., and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.CrossRefGoogle ScholarPubMed
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.Google Scholar
Hallam, A. 1981. Facies Interpretation and the Stratigraphic Record. W. H. Freeman and Company; Oxford.Google Scholar
Haude, R. and Thomas, E. 1983. Ophiuren (Echinodermata) des hohen Oberdevon im nördlichen Rheinischen Schiefergeberge. Paläontologische Zeitschrift 57:121142.Google Scholar
Hesse, H. 1964. Die Ophiuren des englischen Jura. Eclogae Geologicae Helvetiae 57:755802.Google Scholar
Hotchkiss, F. H. C. 1977. Ophiuroid Ophiocanops (Echinodermata) not a living fossil. Journal of Natural History 11:377380.Google Scholar
Kesling, R. V. 1969. A new brittle-star from the Middle Devonian Arkona Shale of Ontario. Contributions from the Museum of Paleontology, University of Michigan 23:3751.Google Scholar
Kesling, R. V., and Le Vasseur, D. 1971. Strataster ohioensis, a new Early Mississippian brittle-star, and the paleoecology of its community. Contributions from the Museum of Paleontology, University of Michigan 23:305341.Google Scholar
Kuhn, O. 1963. Die Tierwelt des Solnhofener Schiefers. A. Ziemsen; Wittenberg-Lutherstadt, East Germany.Google Scholar
Kutscher, F. 1940. Ophiuren-Vorkommen im Muschelkalk Deutschlands. Zeitschrift, Deutsche Geologische Gesellschaft 92:118.Google Scholar
Laudon, L. R., and Beane, B. H. 1937. The crinoid fauna of the Hampton Formation at Le Grand, Iowa. University of Iowa Studies in Natural History 27:227272.Google Scholar
Liddell, W. D. 1975. Ecology and Biostratinomy of a Middle Ordovician Echinoderm Assemblage from Kirkfield, Ontario. Unpublished M.A. thesis, The University of Michigan. Ann Arbor, Michigan.Google Scholar
Loriga, C. B., and Cavacchi, A. 1967. Eccezionale reperto diun gruppo di ofiuroidi nel Werfeniano delle Dolomiti Occidentali (Gruppo della Costabella). Rendiconti delle Classe di Scienze Fisiche, Matematiche e Naturali, Accademia Nazionale dei Lincei, Serie 8, 43:9195.Google Scholar
Meyer, C. A. 1984. Palökologie und Sedimentologie der Echinodermenlagerstätte Schofgraben (mittleres Oxfordian, Weissenstein, Kt. Solothurn). Eclogae Geologicae Helvetiae 77:649673.Google Scholar
Meyer, C. A. 1988. Paléoécologie d'une communauté d'ophiures du Kimméridgien supérieur de la region Havraise (Seine Maritime). Bulletin Trimestriel, Société Géologique de Normandie et Amis du Muséum du Havre 75:2535.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.Google Scholar
Odin, G. S., Curry, D., Gale, N. H., and Kennedy, W. J. 1982. The Phanerozoic time scale in 1981. Pp. 957960. In Odin, G. S. (ed.), Numerical Dating in Stratigraphy. John Wiley and Sons; Chichester, England.Google Scholar
Pease, C. M. 1985. Biases in the durations and diversities of fossil taxa. Paleobiology 11:272292.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology 4:115.CrossRefGoogle Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.Google Scholar
Schäfer, W. 1962. Aktuopaläontologie nach Studien in der Nordsee. W. Kramer; Frankfurt, West Germany.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press; Princeton, New Jersey.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717. In Tevesz, M. J. S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.CrossRefGoogle Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325329.Google Scholar
Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Book Company; New York.Google Scholar
Signor, P. W. III. 1982. Species richness in the Phanerozoic: compensating for sampling bias. Geology 10:625628.Google Scholar
Signor, P. W. III. 1985. Real and apparent trends in species richness through time. Pp. 129150. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press; Princeton, New Jersey.Google Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. Journal of Geology 82:267274.Google Scholar
Spencer, W. K., and Wright, C. W. 1966. Asterozoans. Pp. 5107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. University of Kansas Press; Lawrence, Kansas.Google Scholar
Taylor, B. J. 1966. Taxonomy and morphology of Echinodermata from the Aptian of Alexander Island. British Antarctic Survey Bulletin 8:118.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625. In Tevesz, M. J. S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.Google Scholar
Veizer, J., and Jansen, S. L. 1985. Basement and sedimentary recycling—2: Time dimension to global tectonics. Journal of Geology 93:625643.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press; Princeton, New Jersey.Google Scholar
Walker, T. D. 1985. Diversification functions and the rate of taxonomic evolution. Pp. 311334. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press; Princeton, New Jersey.Google Scholar
Warner, G. F. 1971. On the ecology of a dense bed of the brittlestar Ophiothrix fragilis. Journal of the Marine Biological Association of the United Kingdom 51:267282.Google Scholar