Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-28T14:28:49.717Z Has data issue: false hasContentIssue false

Biotic invasion, niche stability, and the assembly of regional biotas in deep time: comparison between faunal provinces

Published online by Cambridge University Press:  28 April 2016

Mark E. Patzkowsky
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802-2714, U.S.A. E-mail: mep12@psu.edu.
Steven M. Holland
Affiliation:
Department of Geology, University of Georgia, Athens, Georgia 30602-2501, U.S.A.

Abstract

Biotic invasions in the fossil record provide natural experiments for testing hypotheses of niche stability, speciation, and the assembly and diversity of regional biotas. We compare ecological parameters (preferred environment, occupancy, median abundance, rank abundance) of genera shared between faunal provinces during the Richmondian Invasion in the Late Ordovician on the Laurentian continent. Genera that spread from one faunal province to the other during the invasion (invading shared genera) have high Spearman rank correlations (>0.5) in three of four ecological parameters, suggesting a high level of niche stability among invaders. Genera that existed in both regions prior to and following the invasion (noninvading shared genera) have low correlations (<0.3) and suggest niche shift between lineages that diverged at least 8 Myr earlier. Niche shift did not accumulate gradually over this time interval but appears to have occurred in a pulse associated with the onset of the Taconic orogeny and the switch from warm-water to cool-water carbonates in southern Laurentia.

Type
Featured Article
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia 19:3351.Google Scholar
Anstey, R. L., and Chase, T. L.. 1974. Geographic diversity of Late Ordovician corals and bryozoans in North America. Journal of Paleontology 48:11411148.Google Scholar
Bauer, J. E., and Stigall, A. L.. 2014. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods. Estonian Journal of Earth Sciences 63:189194.Google Scholar
Blakey, R. 2015. Northern Arizona University Paleogeography website. http://www2.nau.edu/rcb7.Google Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? II. Journal of Paleontology 57:130.Google Scholar
Boyd, D. W. 2007. Morphology and diagenesis of Dimorphosiphon talbotorum n. sp., an Ordovician skeleton-building alga (Chlorophyta: Dimorphosiphonaceae). Journal of Paleontology 81:18.Google Scholar
Bretsky, P. W., and Bretsky, S. S.. 1976. The maintenance of evolutionary equilibrium in Late Ordovician benthic marine invertebrate faunas. Lethaia 9:223233.Google Scholar
Brett, C. E., and Baird, G. C.. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in D. H. Erwin, and R. L. Anstey, eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brett, C. E., Boucot, A. J., and Jones, B.. 1993. Absolute depths of Silurian benthic assemblages. Lethaia 26:2540.Google Scholar
Briggs, J. C. 2010. Marine biology: the role of accommodation in shaping marine biodiversity. Marine Biology 157:21172126.Google Scholar
Broennimann, O., Treier, U. A., Müller-Schärer, H., Peterson, A. T., and Guisan, A.. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10:701709.Google Scholar
Cisne, J. L., and Rabe, B. D.. 1978. Coenocorrelation: gradient analysis of fossil communities and its applications stratigraphy. Lethaia 11:341364.Google Scholar
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., Weston, P. H., Westoby, M., Wilf, P., and Linder, H. P.. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754756.CrossRefGoogle ScholarPubMed
Darton, N. H. 1906. Geology of the Bighorn Mountains. United States Geological Survey Professional Paper 51:1129.Google Scholar
Dudei, N. L., and Stigall, A. L.. 2010. Using ecological niche modeling to assess biogeographic and niche response of brachiopod species to the Richmondian Invasion (Late Ordovician) in the Cincinnati Arch. Palaeogeography, Palaeoclimatology, Palaeoecology 296:2847.Google Scholar
Elias, M. K. 1937. Depth of deposition of the Big Blue (Late Paleozoic) sediments in Kansas. Geological Society of America Bulletin 48:403432.Google Scholar
Elias, R. J. 1983. Late Ordovician solitary rugose corals of the Stony Mountain Formation, southern Manitoba, and its equivalents. Journal of Paleontology 57:924956.Google Scholar
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W.. 2011. The magnitude and duration of the Late Ordovician–Early Silurian glaciation. Science 331:903906.Google Scholar
Firn, J., Moore, J. L., MacDougall, A. S., Borer, E. T., Seabloom, E. W., HilleRisLambers, J., Harpole, W. S., Cleland, E. E., Brown, C. S., Knops, J. M. H., Prober, S. M., Pyke, D. A., Farrell, K. A., Bakker, J. D., O’Halloran, L. R., Adler, P. B., Collins, S. L., D’Antonio, C. M., Crawley, M. J., Wolkovich, E. M., La Pierre, K. J., Melbourne, B. A., Hautier, Y., Morgan, J. W., Leakey, A. D. B., Kay, A., McCulley, R., Davies, K. F., Stevens, C. J., Chu, C.-J., Holl, K. D., Klein, J. A., Fay, P. A., Hagenah, N., Kirkman, K. P., and Buckley, Y. M.. 2011. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters 14:274281.Google Scholar
Foerste, A. F. 1924. Upper Ordovician faunas of Ontario and Quebec. Geological Survey of Canada Memoir 138:1255.Google Scholar
Fortey, R. A., and Cocks, L. R. M.. 2005. Late Ordovician global warming—the Boda event. Geology 33:405408.Google Scholar
Gierlowski, T. C., and Langenheim, R. L. Jr. 1985. Corals form the Late Ordovician Horseshoe Mountain Member, Bighorn Dolomite, Bighorn Mountains, Sheridan County, Wyoming. Earth Science Bulletin 18:121.Google Scholar
Gilbert, B., and Levine, J. M.. 2013. Plant invasions and extinction debts. Proceedings of the National Academy of Sciences USA 110:17441749.Google Scholar
Hadly, E. A., Spaeth, P. A., and Li, C.. 2009. Niche conservatism above the species level. Proceedings of the National Academy of Sciences USA 106:1970719714.Google Scholar
Holland, S. M. 1993. Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area. Geological Society of America Bulletin 105:306322.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Holland, S. M. 1997. Using time-environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. Pp. 309334 in C. E. Brett, and G. C. Baird, eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 1996. Sequence stratigraphy and long-term oceanographic change in the Middle and Upper Ordovician of the eastern United States. In B. J. Witzke, G. A. Ludvigson, and J. E. Day, eds. Paleozoic sequence stratigraphy: views from the North American craton. Geological Society of America Special Paper 306:117–129.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 1997. Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research 67:250263.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2004. Ecosystem structure and stability: Middle Upper Ordovician of central Kentucky, USA. Palaios 19:316331.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio Region, USA. Palaios 22:392407.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2009a. The Richmondian Invasion: understanding the faunal response to climate change through stratigraphic paleobiology. North American Paleontological Convention Field Trip Guidebook. Cincinnati, Ohio.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2009b. The stratigraphic distribution of fossils in a tropical carbonate succession: Ordovician Bighorn Dolomite, Wyoming, USA. Palaios 24:303317.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2012. Sequence architecture of the Bighorn Dolomite, Wyoming, USA: transition to the Late Ordovician icehouse. Journal of Sedimentary Research 82:599615.Google Scholar
Holland, S. M., and Zaffos, A.. 2011. Niche conservatism along an onshore–offshore gradient. Paleobiology 37:270286.Google Scholar
Holland, S. M., Miller, A. I., Meyer, D. L., and Dattilo, B. F.. 2001. The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16:205217.Google Scholar
Hopkins, M. J. 2014. The environmental structure of trilobite morphological disparity. Paleobiology 40:352373.Google Scholar
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22:415427.Google Scholar
Ivany, L. C., Brett, C. E., Wall, H. L. B., Wall, P. D., and Handley, J. C.. 2009. Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology 35:499524.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.Google Scholar
Jablonski, D. 2009. Paleontology in the twenty-first century. Pp. 471517 in D. Sepkoski, and M. Ruse, eds. The paleobiological revolution: essays on the growth of modern paleontology. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., and Johnson, K. G.. 2000. Life in the last few million years. Paleobiology 26(Suppl. to No. 4): 221235.Google Scholar
Jin, J., Harper, D. A. T., Rasmussen, J. A., and Sheehan, P. M.. 2012. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 367–368:7388.Google Scholar
Jin, J., Harper, D. A. T., Cocks, L. R. M., McCausland, P. J. A., Rasmussen, C. M. O., and Sheehan, P. M.. 2013. Precisely locating the Ordovician equator in Laurentia. Geology 41:107110.Google Scholar
Johnson, K. G., and Curry, G. B.. 2001. Regional biotic turnover dynamics in the Plio-Pleistocene molluscan fauna of the Wanganui Basin, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 172:3951.Google Scholar
Johnson, R. G. 1972. Conceptual models of benthic marine communities. Pp. 148159 in T. J. M. Schopf, ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Kolata, D. R. 1976. Crinoids from the Upper Ordovician Bighorn Formation of Wyoming. Journal of Paleontology 50:444453.Google Scholar
Kowalewski, M., Gurs, K., Nebelsick, J., Oschmann, W., Piller, W. E., and Hoffmeister, A. P.. 2002. Multivariate hierarchical analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geological Society of America Bulletin 114:239256.Google Scholar
Krug, A. Z., and Patzkowsky, M. E.. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435454.Google Scholar
Lam, A. R., and Stigall, A. L.. 2015. Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica. Estonian Journal of Earth Sciences 64:6267.Google Scholar
Lavoie, D. 1995. A Late Ordovician high-energy temperate-water carbonate ramp, southern Quebec, Canada: implications for Late Ordovician oceanography. Sedimentology 42:95116.Google Scholar
Lehmann, D., Brett, C. E., Cole, R., and Baird, G.. 1995. Distal sedimentation in a peripheral foreland basin—Ordovician black shales and associated flysch of the western Taconic foreland, New York State and Ontario. Geological Society of America Bulletin 107:708724.Google Scholar
Ludvigsen, R., Westrop, S. R., Pratt, B. R., Tuffnell, P. A., and Young, G. A.. 1986. Dual biostratigraphy: zones and biofacies. Geoscience Canada 13:139154.Google Scholar
Macomber, R. W. 1970. Articulate brachiopods from the upper Bighorn Formation (Late Ordovician) of Wyoming. Journal of Paleontology 44:416450.Google Scholar
Malizia, R. W., and Stigall, A. L.. 2011. Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian Invasion. Palaeogeography, Palaeoclimatology, Palaeoecology 311:154170.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M.. 1982. Mammalian evolution and the Great American Biotic Interchange. Science 215:13511357.Google Scholar
Meyer, D. L., Miller, A. I., Holland, S. M., and Dattilo, B. F.. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology 76:725732.Google Scholar
Miller, A. K., and Carrier, J. B.. 1942. Ordovician cephalopods from the Bighorn Mountains of Wyoming. Journal of Paleontology 16:531548.Google Scholar
Miller, A. K., Youngquist, W. L., and Collinson, C. W.. 1954. Ordovician cephalopod fauna of Baffin Island. Geological Society of America Memoir 62.Google Scholar
Mitchell, C. E., and Sweet, W. C.. 1989. Upper Ordovician conodonts, brachiopods, and chronostratigraphy of the Whittaker Formation, southwestern District of Mackenzie, N.W.T., Canada. Canadian Journal of Earth Sciences 26:7487.Google Scholar
Myers, C. E., MacKenzie, R. A. III., and Lieberman, B. S.. 2013. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.Google Scholar
Myers, C. E., Stigall, A. L., and Lieberman, B. S.. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41:226244.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E.. 2001. Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American midcontinent. Paleobiology 27:646668.Google Scholar
Patzkowsky, M. E. 1995. Gradient analysis of Middle Ordovician brachiopod biofacies: biostratigraphic, biogeographic, and macroevolutionary implications. Palaios 10:154179.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 1993. Biotic response to a Middle Ordovician paleoceanographic event in eastern North America. Geology 21:619622.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States. In B. J. Witzke, G. A. Ludvigson, and J. E. Day, eds. Paleozoic sequence stratigraphy: views from the North American craton. Geological Society of America Special Paper 306:131–142.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 1997. Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States: a test of coordinated stasis. Paleobiology 23:420443.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on the diversity of regional ecosystems. Paleobiology 33:295309.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.Google Scholar
Patzkowsky, M. E., Slupik, L. M., Arthur, M. A., Pancost, R. D., and Freeman, K. H.. 1997. Late Middle Ordovician environmental change and extinction: harbinger of the Late Ordovician or continuation of Cambrian patterns? Geology 25:911914.Google Scholar
Pearman, P. B., Guisan, A., Broennimann, O., and Randin, C. F.. 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23:149158.Google Scholar
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., and Guisan, A.. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335:13441348.Google Scholar
Pope, M., and Read, J. F.. 1998. Ordovician metre-scale cycles: implications for climate and eustatic fluctuations in the central Appalachians during a global greenhouse, non-glacial to glacial transition. Palaeogeography, Palaeoclimatology, Palaeoecology 138:2742.Google Scholar
Rankey, E. C., Guidry, S. A., Reeder, S. L., and Guarin, H.. 2009. Geomorphic and sedimentologic heterogeneity along a Holocene shelf margin: Caicos Platform. Journal of Sedimentary Research 79:440456.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing, Version 2.11.1. R Foundation for Statistical Computing, Vienna.Google Scholar
Rendall, B., and Husinec, A.. 2012. Importance of Dimorphosiphon (Chlorophyta, Bryopsidales) for facies and paleobiogeographic studies of the Upper Ordovician Richmondian Red River Formation, Williston Basin. Palaios 27:713725.Google Scholar
Ricklefs, R. E., and Jenkins, D. G.. 2011. Biogeography and ecology: towards the integration of two disciplines. Philosophical Transactions of the Royal Society of London B 366:24382448.Google Scholar
Rosenzweig, M. L. 2001. The four questions: what does the introduction of exotic species do to diversity? Evolutionary Ecology Research 3:361367.Google Scholar
Roy, S. K. 1941. The Upper Ordovician fauna of Frobisher Bay, Baffin Land. Field Museum of Natural History Geology Memoirs 2:1179.Google Scholar
Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Haywood, A., Hunter, S. J., and Lieberman, B. S.. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society of London B 281:20141995.Google Scholar
Sax, D. F., and Gaines, S. D.. 2003. Species diversity: from global decreases to local increases. Trends in Ecology and Evolution 18:561566.Google Scholar
Sax, D. F., and Gaines, S. D.. 2008. Species invasions and extinction: the future of native biodiversity on islands. Proceedings of the National Academy of Sciences USA 105:1149011497.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I.. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190 in J. W. Valentine, ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351368.Google Scholar
Sokal, R. R., and Rohlf, F. J.. 1995. Biometry, 3rd ed. Freeman, New York.Google Scholar
Springer, D. A., and Bambach, R. K.. 1985. Gradient versus cluster analysis of fossil assemblages: a comparison from the Ordovician of southwestern Virginia. Lethaia 18:181198.Google Scholar
Stigall, A. L. 2010. Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS ONE 5:e15584.Google Scholar
Stigall, A. L. 2012. Using ecological niche modelling to evaluate niche stability in deep time. Journal of Biogeography 39:772781.Google Scholar
Strayer, D. L., Eviner, V. T., Jeschke, J. M., and Pace, M. L.. 2006. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution 21:645651.Google Scholar
Sweet, W. C. 1979. Conodonts and conodont biostratigraphy of post-Tyrone Ordovician rocks of the Cincinnati region. U.S. Geological Survey Professional Paper 1066–G:126.Google Scholar
Sweet, W. C. 1984. Graphic correlation of upper Middle and Upper Ordovician rocks, North American Midcontinent Province, U.S.A. Pp. 2335 in D. L. Bruton, ed. Aspects of the Ordovician System. University of Oslo, Oslo, Norway.Google Scholar
Valentine, J. W. 1969. Niche diversity and niche size patterns in marine fossils. Journal of Paleontology 43:905915.Google Scholar
Valentine, J. W., and Jablonski, D.. 1993. Fossil communities: compositional variation at many time scales. Pp. 341349 in R. E. Ricklefs, and D. Schluter, eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Berke, S. K.. 2013. The sampling and estimation of marine paleodiversity patterns: implications of a Pliocene model. Paleobiology 39:120.Google Scholar
Vermeij, G. 1991. When biotas meet: understanding biotic interchange. Science 253:10991104.Google Scholar
Vilhena, D. A., and Smith, A. B.. 2013. Spatial bias in the marine fossil record. PLoS ONE 8:e74470.Google Scholar
Walker, K. R., and Laporte, L. F.. 1970. Congruent fossils communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology 44:928944.Google Scholar
Wright, D. F., and Stigall, A. L.. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLoS ONE 8:e68353.Google Scholar
Yoccoz, N. G. 1991. Use, overuse, and misuse of significance tests in evolutionary biology and ecology. Bulletin of the Ecological Society of America 72:106111.Google Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature 207:270272.Google Scholar