Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:26:29.032Z Has data issue: false hasContentIssue false

The relationship between diet and body mass in terrestrial mammals

Published online by Cambridge University Press:  18 March 2016

Silvia Pineda-Munoz
Affiliation:
Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia. E-mail: silvia.pineda-munoz@students.mq.edu.au, john.alroy@mq.edu.au.
Alistair R. Evans
Affiliation:
School of Biological Sciences, Monash University, Victoria 3800, Australia. E-mail: arevans@fastmail.fm.
John Alroy
Affiliation:
Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia. E-mail: silvia.pineda-munoz@students.mq.edu.au, john.alroy@mq.edu.au.

Abstract

Diet and body mass are highly important factors in mammalian ecology, and they have also proven to be powerful paleoecological indicators. Our previous research has proposed a new classification scheme for mammals with more dietary divisions that emphasizes the primary resource in a given diet. We analyzed a database summarizing the dietary preferences of 139 species of marsupial and placental terrestrial mammals (including 14 orders) and their average body masses in order to explore whether this new classification better highlights ecomorphological differences between species. Additionally, the dietary diversity of every species in the data set was quantified by applying the inverse Simpson index to stomach content percentages. We observed a decrease in maximum dietary diversity with increasing body mass. Having lower requirements for energy and nutrients per unit of body weight or ecological advantages such as larger home ranges allows larger mammals to feed on less nutritive feeding resources (i.e., structural plant material). Our results also suggest that body-size ranges are different across dietary specializations. Smaller mammals (<1 kg) are mainly insectivores, granivores, or mixed feeders, while bigger animals (>30 kg) are usually either carnivores or herbivores that feed specifically on grasses and leaves. The medium-size range (1–30 kg) is mostly composed of frugivorous species that inhabit tropical and subtropical rain forests. Thus, the near absence of medium-sized mammals in open environments such as savannas can be linked to the decreasing density of fruit trees needed to support a pure frugivorous diet year-round. In other words, seasonality of precipitation prevents species from specializing on a totally frugivorous diet. Our results suggest that this new classification scheme correlates well with body mass, one of the most studied morphological variables in paleoecology and ecomorphology. Therefore, the classification should serve as a useful basis for future paleoclimatological studies.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Alroy, J., Koch, P. L., and Zachos, J. C.. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Andrews, P., and Evans, E. N.. 1979. The environment of ramapithecus in Africa. Paleobiology 5:2230.CrossRefGoogle Scholar
Andrews, P., Lord, J. M., and Evans, E. M. N.. 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11:177205.CrossRefGoogle Scholar
Bartumeus, F., and Catalan, J.. 2009. Optimal search behavior and classic foraging theory. Journal of Physics A 42:434002.CrossRefGoogle Scholar
Beeman, L. E., and Pelton, M. R.. 1980. Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Bears: Their Biology and Management 4:141147.Google Scholar
Bro, R., and Smilde, A. K.. 2014. Principal component analysis. Analytical Methods 6:28122831.CrossRefGoogle Scholar
Brown, J. H., and Nicoletto, P. F.. 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:14781512.Google Scholar
Burness, G. P., Diamond, J., and Flannery, T.. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences USA 98:1451814523.CrossRefGoogle ScholarPubMed
Carbone, C., Mace, G. M., Roberts, S. C., and Macdonald, D. W.. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.CrossRefGoogle ScholarPubMed
Clauss, M., Schwarm, A., Ortmann, S., Streich, W. J., and Hummel, J.. 2007. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology Part A 148:249265.CrossRefGoogle ScholarPubMed
Clauss, M., Steuer, P., Müller, D. W. H., Codron, D., and Hummel, J.. 2013. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8:e68714.CrossRefGoogle ScholarPubMed
Colon, C. P., and Campos-Arceiz, A.. 2013. The impact of gut passage by binturongs (Arctictis binturong) on seed germination. Raffles Bulletin of Zoology 61:417421.Google Scholar
Demes, B., and Creel, N.. 1988. Bite force, diet, and cranial morphology of fossil hominids. Journal of Human Evolution 17:657670.CrossRefGoogle Scholar
Demment, M. W., and Van Soest, P. J.. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125:641672.CrossRefGoogle Scholar
Eisenberg, J. F. 1981. The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago.Google Scholar
Fernández-Hernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., and Peláez-Campomanes, P.. 2006. Identification problems of arid environments in the Neogene–Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.CrossRefGoogle Scholar
Fisher, D. O., and Dickman, C. R.. 1993. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments 25:397410.CrossRefGoogle Scholar
Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., and Vislobokova, I.. 2002. Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evolutionary Ecology Research 4:10051016.Google Scholar
Ganesh, T., and Davidar, P.. 1999. Fruit biomass and relative abundance of frugivores in a rain forest of southern Western Ghats, India. Journal of Tropical Ecology 15:399413.CrossRefGoogle Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Museum of Paleontology, University of Michigan, Ann Arbor.Google Scholar
Gittleman, J. 1985. Carnivore body size: ecological and taxonomic correlates. Oecologia 67:540554.CrossRefGoogle ScholarPubMed
Hawes, J. E., and Peres, C. A.. 2014. Ecological correlates of trophic status and frugivory in neotropical primates. Oikos 123:365377.CrossRefGoogle Scholar
Humphries, M. M., Thomas, D. W., and Kramer, D. L.. 2003. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiological and Biochemical Zoology 76:165179.CrossRefGoogle ScholarPubMed
Kay, R. F. 1984. On the use of anatomical features to infer foraging behavior in extinct primates. Pp. 2153 in J. Cant, and P. Rodman, eds. Adaptations for foraging in nonhuman primates. Columbia University Press, New York.CrossRefGoogle Scholar
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Paleovertebrata, Montpellier 16:191212.Google Scholar
Liu, L., Puolamäki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E., and Fortelius, M.. 2012. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society B 279:27932799.CrossRefGoogle ScholarPubMed
MacArthur, R. H., and Pianka, E. R.. 1966. On optimal use of a patchy environment. American Naturalist 100:603609.CrossRefGoogle Scholar
McLellan, B. N. 2011. Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology 89:546558.CrossRefGoogle Scholar
Milton, K., and May, M. L.. 1976. Body weight, diet and home range area in primates. Nature 259:459462.CrossRefGoogle ScholarPubMed
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., and Morrison, J. C.. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:933938.CrossRefGoogle Scholar
Palmqvist, P., Gröcke, D. R., Arribas, A., and Fariña, R. A.. 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology 29:205229.2.0.CO;2>CrossRefGoogle Scholar
Petchey, O. L., Beckerman, A. P., Riede, J. O., and Warren, P. H.. 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences USA 105:41914196.CrossRefGoogle ScholarPubMed
Peters, R. H. 1986. The ecological implications of body size. Cambridge University Press, New York.Google Scholar
Pineda-Munoz 2015. Mutli-proxy dental morphology analysis: a new approach for inferring diet. Society of Vertebrate Paleontology 75th Annual Meeting. Dallas, Tex.Google Scholar
Pineda-Munoz, S., and Alroy, J.. 2014. Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B 281:1789.Google ScholarPubMed
Price, S. A., and Hopkins, S. S. B.. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society 115:173184.CrossRefGoogle Scholar
Pyke, G. H., Pulliam, H. R., and Charnov, E.. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137154.CrossRefGoogle Scholar
R Core Team. 2013. R: a Language and environment for statistical computing. Vienna, Austria.Google Scholar
Raia, P., Carotenuto, F., Passaro, F., Fulgione, D., and Fortelius, M.. 2012. Ecological specialization in fossil mammals explains Cope’s rule. American Naturalist 179:328337.CrossRefGoogle ScholarPubMed
Reed, K. E. 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384408.Google Scholar
Robinson, J. G., and Redford, K. H.. 1986. Body size, diet, and population density of Neotropical forest mammals. American Naturalist 128:665680.CrossRefGoogle Scholar
Rodríguez, J. 1999. Use of cenograms in mammalian palaeoecology. A critical review. Lethaia 32:331347.CrossRefGoogle Scholar
Schoener, T. W. 1989. Food webs: from the small to the large: the Robert H. MacArthur Award Lecture. Ecology 70:15591589.CrossRefGoogle Scholar
Schwartz, C. C., and Ellis, J. E.. 1981. Feeding ecology and niche separation in some native and domestic ungulates on the Shortgrass Prairie. Journal of Applied Ecology 18:343353.CrossRefGoogle Scholar
Siemann, E., and Brown, J. H.. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:27882792.CrossRefGoogle Scholar
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688688.CrossRefGoogle Scholar
Smith, F. A., and Lyons, S. K.. 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society B 366:23642378.CrossRefGoogle Scholar
Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P.. 2003. Body mass of late Quaternary mammals. Ecology 84:34033403.CrossRefGoogle Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. M., and Hadly, E. A.. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.CrossRefGoogle ScholarPubMed
Steuer, P., Südekum, K.-H., Tütken, T., Müller, D. W. H., Kaandorp, J., Bucher, M., Clauss, M., and Hummel, J.. 2014. Does body mass convey a digestive advantage for large herbivores? Functional Ecology 28:11271134.CrossRefGoogle Scholar
Travouillon, K. J., and Legendre, S.. 2009. Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 272:6984.CrossRefGoogle Scholar
Ungar, P. S. 2010. Mammal teeth: origin, evolution, and diversity. Johns Hopkins University Press, Baltimore, Md.CrossRefGoogle Scholar
Valverde, J. A. 1967. Estructura de una comunidad mediterránea de vertebrados terrestres. Consejo Superior de Investigaciones Científicas, Spain.Google Scholar
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., and Jetz, W.. 2014. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027.CrossRefGoogle Scholar
Wilson, D. E., and Reeder, D. A. M.. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Md.CrossRefGoogle Scholar
Wilson, E. O., ed. 1988. Biodiversity. National Academies Press, Washington, D.C.Google Scholar
Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., and Jernvall, J. 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457460.CrossRefGoogle ScholarPubMed