Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.438 Render date: 2021-12-01T23:00:34.059Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Quantifying the process and abruptness of the end-Permian mass extinction

Published online by Cambridge University Press:  08 April 2016

Yue Wang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn
Peter M. Sadler
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.
Shu-zhong Shen
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn
Douglas H. Erwin
Affiliation:
Department of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, U.S.A.
Yi-chun Zhang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn
Xiang-dong Wang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn
Wei Wang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn
James L. Crowley
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho 83725-1535, U.S.A.
Charles M. Henderson
Affiliation:
Department of Geoscience, University of Calgary, Alberta T2N 1N4, Canada

Abstract

Studies of the end-Permian mass extinction have suggested a variety of patterns from a single catastrophic event to multiple phases. But most of these analyses have been based on fossil distributions from single localities. Although single sections may simplify the interpretation of species diversity, they are susceptible to bias from stratigraphic incompleteness and facies control of preservation. Here we use a data set of 1450 species from 18 fossiliferous sections in different paleoenvironmental settings across South China and the northern peri-Gondwanan region, and integrate it with high-precision geochronologic data to evaluate the rapidity of the largest Phanerozoic mass extinction. To reduce the Signor-Lipps effect, we applied constrained optimization (CONOP) to search for an optimal sequence of first and last occurrence datums for all species and generate a composite biodiversity pattern based on multiple sections. This analysis indicates that an abrupt extinction of 62% of species took place within 200 Kyr. The onset of the sudden extinction is around 252.3 Ma, just below Bed 25 at the Meishan section. Taxon turnover and diversification rates suggest a deterioration of the living conditions nearly 1.2 Myr before the sudden extinction. The magnitude of the extinction was such that there was no immediate biotic recovery. Prior suggestions of highly variable, multi-phased extinction patterns reflect the impact of the Signor-Lipps effect and facies-dependent occurrences, and are not supported following appropriate statistical treatment of this larger data set.

Type
Articles
Information
Paleobiology , Volume 40 , Issue 1 , Winter 2014 , pp. 113 - 129
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T., Shen, Y. A., Zhang, T. G., Lyons, T., Bates, S., Rowe, H., and Nguyen, T. K. T. 2008. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry, Geophysics, Geosystems 9:Q04025.CrossRefGoogle Scholar
Algeo, T., Henderson, C. M., Ellwood, B., Rowe, H., Elswick, E., Bates, S., Lyons, T., Hower, J. C., Smith, C., Maynard, B., Hays, L., Summons, R., Fulton, J., and Freeman, K. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin 124:14241448.CrossRefGoogle Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2003. Global databases will yield reliable measures of global biodiversity. Paleobiology 29:2629.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Angiolini, L., Checconi, A., Gaetani, M., Rettori, R. 2010. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geological Journal 45:216229.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K., and Wang, W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280:10391045.CrossRefGoogle ScholarPubMed
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Cao, C. Q., and Zheng, Q. F. 2009. Geological event sequences of the Permian–Triassic transition recorded in the microfacies in Meishan section. Science in China D 52:15291536.CrossRefGoogle Scholar
Cao, C. Q., Love, G. D., Hays, L. E., Wang, W., Shen, S. Z., and Summons, R. E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters 281:188201.CrossRefGoogle Scholar
Chen, Z. Q., Kaiho, K., and George, A. D. 2005. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 224:232269.CrossRefGoogle Scholar
Chen, Z. Q., Tong, J. N., Zhang, K. X., Yang, H., Liao, Z., Song, H. J., and Chen, J. 2009. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences 56:775797.CrossRefGoogle Scholar
Clapham, M. E., Shen, S. Z., and Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1993. The great Paleozoic crisis. Columbia University Press, New York.Google Scholar
Erwin, D. H. 2006. Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J.Google Scholar
Fang, Z. J. 2004. Approach to the extinction pattern of Permian bivalvia of South China. Pp. 571646inRong, J. Y. and Fang, Z. J., eds. Mass extinction and recovery—evidence from the Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Hefei.Google Scholar
Feng, Q. L., He, W. H., Gu, S. Z., Meng, Y. Y., Jin, Y. X., and Zhang, F. 2007. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change 55:177192.CrossRefGoogle Scholar
Grice, K., Cao, C.Q., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y. G. 2005. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706709.CrossRefGoogle ScholarPubMed
Groves, J. R., and Lee, A. 2008. Accelerated rates of foraminiferal origination and extinction during the Late Paleozoic Ice Age. Journal of Foraminiferal Research 38:7484.CrossRefGoogle Scholar
He, W. H., Shen, S. Z., Feng, Q. L., and Gu, S. Z. 2005. A Late Changhsingian (Late Permian) deepwater brachiopod fauna from the Talung formation at the Dongpan section, southern Guangxi, South China. Journal of Paleontology 79:927938.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:1341462.0.CO;2>CrossRefGoogle Scholar
Hsieh, H. L., and Li, L. A. 1998. Rarefaction diversity: a case study of polychaete communities using an amended FORTRAN program. Zoological Studies 37:1321.Google Scholar
Isozaki, Y. 1997. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235238.CrossRefGoogle ScholarPubMed
Jin, Y. G. 1993. Pre-Lopingian benthos crisis. Comptes Rendus XII ICC-P 2:269278.Google Scholar
Jin, Y. G., Zhang, J., and Shang, Q. H. 1994. Two phases of the end-Permian mass extinction. Canadian Society of Petroleum Geologists Memoir 17:813822.Google Scholar
Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., and Erwin, D. H. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289:432436.CrossRefGoogle ScholarPubMed
Jin, Y. G., Shen, S. Z., Henderson, C. M., Wang, X. D., Wang, W., Wang, Y., Cao, C. Q., and Shang, Q. H. 2006a. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes 29:253262.Google Scholar
Jin, Y. G., Wang, Y., Henderson, C. M., Wardlaw, B. R., Shen, S. Z., and Cao, C. Q. 2006b. The Global Boundary Stratotype Section and Point (GSSP) for the base of Changhsingian Stage (Upper Permian). Episodes 29:175182.Google Scholar
Joachimski, M. M., Lai, X. L., Shen, S. Z., Jiang, H. S., Luo, G. M., Chen, B., Chen, J., and Sun, Y. D. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195198.CrossRefGoogle Scholar
Kaiho, K., Chen, Z. Q., Kawahata, H., Kajiwara, Y., and Sato, H. 2006. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeography, Palaeoclimatology, Palaeoecology 239:396405.CrossRefGoogle Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W., and Trofimov, V. R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214:7591.CrossRefGoogle Scholar
Kiessling, W. 2006. Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences 3:1527.CrossRefGoogle Scholar
Kiessling, W., Simpson, C., and Foote, M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196198.CrossRefGoogle ScholarPubMed
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.CrossRefGoogle Scholar
Korchagin, O. A., 2011. Foraminifers in the global stratotype (GSSP) of the Permian–Triassic boundary (Bed 27, Meishan, South China). Stratigraphy and Geological Correlation 19:160172.CrossRefGoogle Scholar
Li, Z. S., Zhan, L. P., Dai, J. Y., Jin, R. G., Zhu, X. F., Zhang, J. H., Huang, H. Q., Xu, D. Y., Yan, Z., and Li, H. M. 1989. Study on the Permian–Triassic biostratigraphy and event stratigraphy of northern Sichuan and southern Shaanxi. Geological Publishing House, Beijing.Google Scholar
Lu, P. J., Yogo, M., and Marshall, C. R. 2006. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proceedings of the National Academy of Sciences USA 103:27362739.CrossRefGoogle ScholarPubMed
MacLeod, N. 1996. Nature of the Cretaceous-Tertiary planktonic foraminiferal record: Stratigraphic confidence intervals, Signor-Lipps effect, and patterns of survivorship, Cretaceous-Tertiary mass extinctions. Pp. 85138inMacLeod, N. and Keller, G., eds. The Cretaceous-Tertiary mass extinction: biotic and environmental effects. Norton, New York.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges; partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20:459469.CrossRefGoogle Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.CrossRefGoogle Scholar
Marshall, C. R. 2010. Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges. Paleontological Society Papers 16:291316.Google Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:13601363.CrossRefGoogle ScholarPubMed
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302:10301032.CrossRefGoogle ScholarPubMed
Miller, A. I., and Foote, M. 2009. Epicontinental seas versus open-ocean settings: the kinetics of mass extinction and origination. Science 326:11061109.CrossRefGoogle ScholarPubMed
Nafi, M., Xie, W. C., and Zhang, N. 2006. Late Permian (Changhsingian) conodont biozonation and the basal boundary, Ganxi section, western Hubei Province, South China. Canadian Journal of Earth Sciences 43:121133.CrossRefGoogle Scholar
Payne, J. L., and Clapham, M. E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40:89111.CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Rampino, M. R., Prokoph, A., and Adler, A. 2000. Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian–Triassic boundary. Geology 28:643646.2.0.CO;2>CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Retallack, G. J. 1995. Permian–Triassic life crisis on land. Science 267:7780.CrossRefGoogle ScholarPubMed
Sadler, P. M. 2004. Quantitative biostratigraphy—achieving finer resolution in global correlation. Annual Review of Earth and Planetary Sciences 32:187213.CrossRefGoogle Scholar
Sadler, P. M. 2006. Composite time-lines: a means to leverage resolving power from radioisotopic dates and biostratigraphy. Paleontological Society Papers 12:145170.Google Scholar
Sadler, P. M., and Cooper, R. A. 2003. Best-fit intervals and consensus sequences: comparison of the resolving power of traditional biostratigraphy and computer-assisted correlation. Pp. 4994inHarries, P. J., ed. High-resolution approaches in stratigraphic paleontology (Topics in Geobiology Vol. 21). Kluwer Academic, Dordrecht.Google Scholar
Sadler, P. M., and Sabado, J. A. 2004. Computer-assisted sequencing of large numbers of events from the geologic record; escaping the constraints on resolving power imposed by traditional biozones. Geological Society of America Abstracts with Programs 36:212.Google Scholar
Sengör, A. M. C., and Atayman, S. 2009. The Permian extinction and the Tethys: an exercise in global geology. Geological Society of America Special Paper 448.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum, Milwaukee.Google Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity in marine extinction events. Wiley, New York.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Shang, Q. H., Caridroit, M., and Wang, Y. J. 2001. Radiolarians from the uppermost Permian Changhsingian of southern Guangxi. Acta Micropalaeontologica Sinica 18:229240.Google Scholar
Shen, S. Z., and Shi, G. R. 1996. Diversity and extinction patterns of Permian brachiopoda of South China. Historical Biology 12:93110.CrossRefGoogle Scholar
Shen, S. Z., and Shi, G. R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region. Paleobiology 28:449463.Google Scholar
Shen, S. Z., Cao, C. Q., Henderson, C. M., Wang, X. D., Shi, G. R., Wang, Y., and Wang, W. 2006a. End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld 15:330.CrossRefGoogle Scholar
Shen, S. Z., Zhang, H., Li, W. Z., Mu, L., and Xie, J. F. 2006b. Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geological Journal 41:345361.CrossRefGoogle Scholar
Shen, S. Z., Wang, Y., Henderson, C. M., Cao, C. Q., and Wang, W. 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld 16:120139.CrossRefGoogle Scholar
Shen, S. Z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C. Q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y. A., Wang, X. D., Wang, W., Mu, L., Li, W. Z., Tang, Y. G., Liu, X. L., Liu, L. J., Zeng, Y., Jiang, Y. F., and Jin, Y. G. 2011. Calibrating the end-Permian mass extinction. Science 334:13671372.CrossRefGoogle ScholarPubMed
Sheng, J. Z., Chen, C. Z., Wang, Y. G., Rui, L., Liao, Z. T., Yuji, B., Kenichi, I., Keiji, N., and Koji, N. 1984. Permian–Triassic boundary in middle and eastern Tethys. Journal of Faculty of Science of Hokkaido University, series IV, 21:133181.Google Scholar
Shi, G. R., Shen, S. Z., and Tong, J. N. 1999. Two discrete, possibly unconnected, Permian marine mass extinction. Pp. 148150inYin, H. F. and Tong, J. N., eds. International conference on Pangea and the Paleozoic–Mesozoic transition. China University of Geosciences Press, Wuhan.Google Scholar
Signor, I. P. W., and Lipps, J. H., eds. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. InSilver, L. T. and Schultz, P. H., eds. Geological implications of impacts of comets and large asteroids on the Earth. Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Song, H. J., Tong, J. N., and Chen, Z. Q. 2009. Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences 56:765773.CrossRefGoogle Scholar
Song, H. J., Wignall, P. B., Tong, J. N., and Yin, H. F. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience 6:5256.CrossRefGoogle Scholar
Stanley, S. M., and Yang, X. N. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:13401344.CrossRefGoogle ScholarPubMed
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Sun, Y. D., Joachimski, M. M., Wignall, P. B., Yan, C. B., Chen, Y. L., Jiang, H. S., Wang, L. N., and Lai, X. L. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366370.CrossRefGoogle ScholarPubMed
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277:490500.CrossRefGoogle Scholar
Tong, J. N., Hansen, H. J., Zhao, L. S., and Zuo, J. X. 2005. A GSSP candidate of the Induan-Olenekian boundary-stratigraphic sequence of the West Pingdingshan section in Chaohu, Anhui Province. Journal of Stratigraphy 29:205214.Google Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29:351354.2.0.CO;2>CrossRefGoogle Scholar
Wang, S. C., and Everson, P. J. 2007. Confidence intervals for pulsed mass extinction events. Paleobiology 33:324336.CrossRefGoogle Scholar
Wang, S. C., and Marshall, C. R. 2004. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30:518.2.0.CO;2>CrossRefGoogle Scholar
Wang, X. D., and Sugiyama, T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285294.Google Scholar
Wang, Y., Shen, S. Z., Cao, C. Q., Wang, W., Henderson, C. M., and Jin, Y. G. 2006. The Wuchiapingian-Changhsingian boundary (Upper Permian) at Meishan of Changxing County, South China. Journal of Asian Earth Science 26:575583.Google Scholar
Ward, P. D., Botha, J., Buick, R., De Kock, M. O., Erwin, D. H., Garrison, G. H., Kirschvink, J. L., and Smith, R. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709714.CrossRefGoogle ScholarPubMed
Webster, M., Sadler, P. M., Kooser, M. A., and Fowler, E. 2003. Combining stratigraphic sections and museum collections to increase biostratigraphic resolution. Pp. 95128inHarries, P. J., ed. High-resolution approaches in stratigraphic paleontology (Topics in Geobiology Vol. 21). Kluwer Academic, Dordrecht.Google Scholar
Wignall, P. B., and Twitchett, R. J. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:11551158.CrossRefGoogle ScholarPubMed
Wu, S. B. 1993. Regression and transgression by terminal Changxingian. Pp. 1519inYang, Z. Y., Wu, S. B., Yin, H. F., Wu, G., Zhang, K. X., and Bi, X., eds. Permo–Triassic Events of South China. Geological Publishing House, Beijing.Google Scholar
Wu, Y. S. 2006. Lagged mass extinction in conodonts across the Permian–Triassic boundary. Earth and Life 1:16. http://www.geofinds.com.Google Scholar
Xie, S. C., Pancost, R. D., Yin, H. F., Wang, H. M., and Evershed, R. P. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494497.CrossRefGoogle ScholarPubMed
Yang, F. Q., and Wang, H. M. 2000. Ammonoid succession model across the Paleozoic–Mesozoic transition in South China. Pp. 353369in Yin et al. 2000.Google Scholar
Yang, Z. Y., Yin, H. F., Wu, S. B., Yang, F. Q., Ding, M. H., and Xu, G. R. 1987. Permian–Triassic boundary stratigraphy and fauna of South China. Geological Publishing House, Beijing.Google Scholar
Yang, Z. Y., Wu, S. B., Yin, H. F., Xu, G. R., and Zhang, K. X. 1991. Geological events of Permo–Triassic transitional period in South China. Geological Publishing House, Beijing.Google Scholar
Yin, H. F., and Tong, J. N. 1998. Multidisciplinary high-resolution correlation of the Permian–Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 143:199212.CrossRefGoogle Scholar
Yin, H. F., Dickins, J. M., Shi, G. R., and Tong, J. N., eds. 2000. Permian–Triassic evolution of Tethys and western circum-Pacific (Developments in Palaeontology and Stratigraphy Vol. 18). Elsevier, Amsterdam.Google Scholar
Yin, H. F., Zhang, K. X., Tong, J. N., Yang, Z. Y., and Wu, S. B. 2001. The global stratotype section and point (GSSP) of the Permian–Triassic boundary. Episodes 24:102114.Google Scholar
Yin, H. F., Feng, Q. L., Lai, X. L., Baud, A., and Tong, J. N. 2007. The protracted Permo–Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Global and Planetary Change 55:120.CrossRefGoogle Scholar
Zhang, K. X., Tong, J. N., Yin, H. F., and Wu, S. B. 1996. Sequence stratigraphy of the Permian–Triassic boundary section of Changxing, Zhejiang. Acta Geologica Sinica 70:270281.Google Scholar
Zhang, K. X., Yu, J. X., Lin, Q. X., Jin, Y. L., and Chen, B. 2004. Palynological assemblage in section D of Meishan, Changxing, Zhejiang and its significance of global correlation. Journal of China University of Geosciences 29:253262.Google Scholar
Zhao, J. K., Sheng, J. Z., Yao, Z. Q., Liang, X. L., Chen, C. Z., Rui, L., and Liao, Z. T. 1981. The Changhsingian and the Permian–Triassic boundary in South China. Bulletin of the Nanjing Institute of Geology and Palaeontology 2:1112.Google Scholar
61
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantifying the process and abruptness of the end-Permian mass extinction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantifying the process and abruptness of the end-Permian mass extinction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantifying the process and abruptness of the end-Permian mass extinction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *