Skip to main content Accessibility help
Hostname: page-component-55b6f6c457-rq6d8 Total loading time: 0.235 Render date: 2021-09-27T20:30:13.026Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Mammal-like occlusion in conodonts

Published online by Cambridge University Press:  20 May 2016

Philip C. J. Donoghue*
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: and
Mark A. Purnell
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: and
Previous address: School of Earth Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom


Conodont element function and feeding mechanisms are of considerable paleobiological importance, yet many details remain poorly understood and speculative. Analysis based on morphology, physical juxtaposition, and patterns of surface damage and microwear on pairs of Pa elements from individuals of Idiognathodus indicates that these elements crushed food by rotational closure, which brought the oral surfaces into complex interpenetrative occlusion. Other molariform conodont elements also functioned in this manner. Occlusion of this complexity is unique among nonmammalian vertebrates, and is all the more surprising given that conodonts lacked jaws. In addition to enhanced understanding of food processing in conodonts, our analysis suggests that many details of conodont Pa element morphology, which underpin taxonomy and biostratigraphy, can now be interpreted in a paleobiological, functional context.

Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aldridge, R. J., Smith, M. P., Norby, R. D., and Briggs, D. E. G. 1987. The architecture and function of Carboniferous polygnathacean conodont apparatuses. Pp. 6376. in Aldridge, R. J. ed. Palaeobiology of conodonts Ellis Horwood, Chichester, England.Google Scholar
Aldridge, R. J. and Purnell, M. A. 1996. The conodont controversies. Trends in Ecology and Evolution 11: 463468.CrossRefGoogle ScholarPubMed
Babcock, L. E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry. Journal of Paleontology 67: 217229.CrossRefGoogle Scholar
Baesemann, J. F. 1973. Missourian (Upper Pennsylvanian) conodonts of northeastern Kansas. Journal of Paleontology 47: 689710.Google Scholar
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia 9: 185206.CrossRefGoogle Scholar
Bengtson, S. 1983. The early history of the conodonta. Fossils and Strata 15: 519.Google Scholar
Carroll, R. L. and Lindsay, W. 1985. The cranial anatomy of the primitive reptile Procolophon. Canadian Journal of Earth Sciences 22: 15711587.CrossRefGoogle Scholar
Clark, J. M., Jacobs, L. L., and Downs, W. R. 1989. Mammal-like dentition in a Mesozoic crocodylian. Science 244: 10641066.CrossRefGoogle Scholar
Crompton, A. W. and Hiiemae, K. 1970. Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zoological Journal of the Linnean Society. 49: 2147.CrossRefGoogle Scholar
DeMar, R. and Bolt, J. R. 1981. Dentitional organization and function in a Triassic reptile. Journal of Paleontology 55: 967984.Google Scholar
Donoghue, P. C. J. 1998. Growth and patterning in the conodont skeleton. Philosophical Transactions of the Royal Society of London B 353: 633666.CrossRefGoogle Scholar
Donoghue, P. C. J. and Purnell, M. A. In press. Growth, function, and the conodont fossil record Geology.Google Scholar
Du Bois, E. P. 1943. Evidence on the nature of conodonts. Journal of Paleontology 17: 155159.Google Scholar
Fox, R. C., Youzwyshyn, G. P., and Krause, D. W. 1992. Post-Jurassic mammal-like reptile from the Palaeocene. Nature 358: 233235.CrossRefGoogle ScholarPubMed
Gordon, K. D. 1982. A study of microwear on chimpanzee molars: implications for dental microwear analysis. American Journal of Physical Anthropology 59: 195215.CrossRefGoogle ScholarPubMed
Janis, C. M. 1990. The correlation between diet and dental wear in herbivorous mammals and its relationship to the determination of diets of extinct species. Pp. 241259. in Boucot, A. J. ed. Evolutionary paleobiology of behavior and coevolution Elsevier, Amsterdam.Google Scholar
Jeppsson, L. 1971. Element arrangement in conodont apparatuses of Hindeodella type and in similar forms. Lethaia 4: 101123.CrossRefGoogle Scholar
Jeppsson, L. 1979. Conodont element function. Lethaia 12: 153171.CrossRefGoogle Scholar
Kemp, A. 1977. The pattern of tooth plate formation in the Australian lungfish, Neoceratodus forsteri Krefft. Zoological Journal of the Linnean Society 60: 223258.CrossRefGoogle Scholar
Klapper, G. 1971. Sequence within the conodont genus Polygnathus in the New York lower Middle Devonian. Geologica et Palaeontologica 5: 5979.Google Scholar
Klapper, G. and Lane, H. R. 1985. Upper Devonian (Frasnian) conodonts of the Polygnathus biofacies, N.W.T., Canada. Journal of Paleontology 59: 904951.Google Scholar
Kuz'min, A. V. 1990. Asymmetrical pairs of platform elements of Polygnathus (conodonts). Paleontological Journal 1990: 6270.Google Scholar
Lane, H. R. 1968. Symmetry in conodont element-pairs. Journal of Paleontology 42: 12581263.Google Scholar
Lindström, M. 1964. Conodonts. Elsevier, Amsterdam.Google Scholar
Maas, M. C. 1991. Enamel structure and microwear: an experimental study of the response of enamel to shearing force. American Journal of Physical Anthropology 85: 3149.CrossRefGoogle ScholarPubMed
Maas, M. C. 1994. A scanning electron-microscope study of in vitro abrasion of mammalian tooth enamel under compressive loads. Archives of Oral Biology 39: 111.CrossRefGoogle Scholar
Müller, K. J. and Nogami, Y. 1971. U¨ber die Feinbau der Conodonten. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy 38: 187.Google Scholar
Müller, K. J. 1972. Growth and function of conodonts. Pp. 2027. in. 24th International Geological Congress, Montreal.Google Scholar
Nicoll, R. S. 1985. Multielement composition of the conodont species Polygnathus xylus xylus Stauffer, 1940 and Ozarkodina brevis (Bischoff and Ziegler, 1957) from the Upper Devonian of the Canning Basin, Western Australia. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 9: 133147.Google Scholar
Nicoll, R. S. 1987. Form and function of the Pa element in the conodont animal. Pp. 7790. in Aldridge, R. J. ed. Palaeobiology of conodonts. Ellis Horwood, Chichester, England.Google Scholar
Nicoll, R. S. 1995. Conodont element morphology, apparatus reconstructions and element function: a new interpretation of conodont biology with taxonomic implications. Courier Forschungsinstitut Senckenberg 182: 247262.Google Scholar
Norby, R. D. 1976. Conodont apparatuses from Chesterian (Mississippian) strata of Montana and Illinois Ph.D. dissertation. University of Illinois at Urbana-Champaign.Google Scholar
Pough, F. H., Heiser, J. B., and McFarland, W. N. 1996. Vertebrate life, 4th ed. Prentice Hall, Upper Saddle River, N.J.Google Scholar
Purnell, M. A. 1993. Feeding mechanisms in conodonts and the function of the earliest vertebrate hard tissues. Geology 21: 375377.2.3.CO;2>CrossRefGoogle Scholar
Purnell, M. A. 1994. Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia 27: 129138.CrossRefGoogle Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374: 798800.CrossRefGoogle Scholar
Purnell, M. A.In press. Conodonts: functional analysis of disarticulated skeletal structures lacking extant homologues. Pp. 129146. in Savazzi, E. ed. Functional morphology of the invertebrate skeleton. Wiley, Chichester, England.Google Scholar
Purnell, M. A. and Donoghue, P. C. J. 1997. Skeletal architecture and functional morphology of ozarkodinid conodonts. Philosophical Transactions of the Royal Society of London B 352: 15451564.CrossRefGoogle Scholar
Purnell, M. A. and Donoghue, P. C. J. 1998. Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Palaeontology 41: 57102.Google Scholar
Purnell, M. A. and von Bitter, P. H. 1992. Blade-shaped conodont elements functioned as cutting teeth. Nature 359: 629631.CrossRefGoogle Scholar
Rensberger, J. M. 1978. Scanning electron microscopy of wear and occlusal events in some small herbivores. Pp. 523. in Butler, P. M., Joysey, K. A. eds. Development, function and evolution of teeth. Academic Press, New York.Google Scholar
Rensberger, J. M. 1995. Determination of stresses in mammalian dental enamel and their relevance to the interpretation of feeding behaviors in extinct taxa. Pp. 151172. in Thomason, J. ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Rhodes, F. H. T. 1952. A classification of Pennsylvanian conodont assemblages. Journal of Paleontology 26: 886901.Google Scholar
Robinson, P. L. 1956. An unusual sauropod dentition. Zoological Journal of the Linnean Society 43: 283293.CrossRefGoogle Scholar
Sandberg, C. A. and Ziegler, W. 1979. Taxonomy and biofacies of important conodonts of Late Devonian styriacus Zone, United States and Germany. Geologica et Palaeontologica 13: 173212.Google Scholar
Sansom, I. J. 1996. Pseudooneotodus: a histological study of an Ordovician to Devonian vertebrate lineage. Zoological Journal of the Linnean Society 118: 4757.CrossRefGoogle Scholar
Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science 256: 13081311.CrossRefGoogle ScholarPubMed
Smith, K. K. 1993. The form of the feeding apparatus in terrestrial vertebrates: studies of adaptation and constraint. Pp. 150196. in Hanken, J., Hall, B. F. eds. The skull. University of Chicago Press, Chicago.Google ScholarPubMed
Stamm, R. G. 1996. Reversals of misfortune: a new species? of Idiognathodus (Conodonta) based on functional surface morphology. In Repetski, J. E. ed. Sixth North American Paleontological Convention Abstracts of Papers Paleontological Society Special Publication. 8: 369. Smithsonian Institution Press, Washington, D.C.Google Scholar
Sweet, W. C. 1985. Conodonts: those fascinating little whatzits. Journal of Paleontology 59: 485494.Google Scholar
Teaford, M. F. 1988. Scanning electron microscope diagnosis of wear patterns versus artefacts on fossil teeth. Scanning Microscopy 2: 11671175.Google Scholar
Voges, A. 1959. Conodonten aus dem Untercarbon I und II (Gattendorfia-und Pericyclus-Stufe) des Sauerlandes. Pala¨ontologische Zeitschrift 33: 266314.CrossRefGoogle Scholar
von Bitter, P. H. 1972. Environmental control of conodont distribution in the Shawnee Group (Upper Pennsylvanian) of eastern Kansas. University of Kansas Paleontological Contributions 59: 1105.Google Scholar
Weddige, K. 1990. Pathological conodonts. Courier Forschungsinstitut Senckenberg 118: 563589.Google Scholar
Wild, R. 1978. Die Flugsaurier (Reptilia, Pterosauria) aus der Oberen Trias von Cene bei Bergamo, Italien. Bollettino della Societa Paleontographica Italiana 17: 176256.Google Scholar
Wu, X.-C., Sues, H.-D., and Sun, A. 1995. A plant-eating crocodyliform reptile from the Cretaceous of China. Nature 376: 678680.CrossRefGoogle Scholar
Young, J. Z. 1978. Programs of the brain. Oxford University Press, Oxford.Google Scholar
Zhang, S., Aldridge, R. J., and Donoghue, P. C. J. 1997. An Early Triassic conodont with periodic growth?. Journal of Micropalaeontology 16: 6572.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mammal-like occlusion in conodonts
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mammal-like occlusion in conodonts
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mammal-like occlusion in conodonts
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *