Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-30T09:21:23.570Z Has data issue: false hasContentIssue false

The Generification of the Fossil Record

Published online by Cambridge University Press:  08 April 2016

Jonathan R. Hendricks*
Affiliation:
Department of Geology, San José State University, San José, California 95192, U.S.A. and Paleontological Research Institution, Ithaca, New York 14850, U.S.A. E-mail: jonathan.hendricks@sjsu.edu
Erin E. Saupe
Affiliation:
Department of Geology, University of Kansas, Lawrence, Kansas 66045, U.S.A. E-mail: eesaupe@ku.edu
Corinne E. Myers
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A. E-mail: cmyers@fas.harvard.edu
Elizabeth J. Hermsen
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, U.S.A. E-mail: hermsen@ohio.edu
Warren D. Allmon
Affiliation:
Paleontological Research Institution, Ithaca, New York 14850, U.S.A. and Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, 14853, U.S.A. E-mail: wda1@cornell.edu
*
Corresponding author

Abstract

Many modern paleobiological analyses are conducted at the generic level, a practice predicated on the validity of genera as meaningful proxies for species. Uncritical application of genera in such analyses, however, has led—perhaps inadvertently—to the unjustified reification of genera in an evolutionary context. While the utility of genera as proxies for species in evolutionary studies should be evaluated as an empirical issue, in practice it is increasingly assumed (rather than demonstrated) that genera are suitable proxies for species. This is problematic on both ontological and epistemological grounds. Genera are arbitrarily circumscribed, non-equivalent, often paraphyletic, and sometimes polyphyletic collections of species. They are useful tools for communication but have no theoretical or biological reality of their own and, whether monophyletic or not, cannot themselves operate in the evolutionary process. Attributes considered important for understanding macroevolution—e.g., geographic ranges, niche breadths, and taxon durations—are frequently variable among species within genera and will be inflated at the generic level, especially in species-rich genera. Consequently, the meaning(s) of results attained at the generic level may not “trickle down” in any obvious way that elucidates our understanding of evolution at the species level. Ideally, then, evolutionary studies that are actually about species should be pursued using species-level data rather than proxy data tabulated using genera. Where genera are used, greater critical attention should be focused on the degree to which attributes tabulated at the generic level reflect biological properties and processes at the species level.

Type
Featured Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M. 2001. Systematic paleontology. Journal of Paleontology 75:10551057.Google Scholar
Adrain, J. M., and Westrop, S. R. 2000. An empirical assessment of taxic paleobiology. Science 289:110112.Google Scholar
Adrain, J. M., and Westrop, S. R. 2003. Paleodiversity: we need new data. Paleobiology 29:2225.Google Scholar
Allen, T. F. H., and Hoekstra, T. W. 1992. Toward a unified ecology. Columbia University Press, New York.Google Scholar
Allmon, W. D. 1992. Genera in paleontology: definition and significance. Historical Biology 6:149158.Google Scholar
Allmon, W. D. 2005. The importance of museum collections in paleobiology. Paleobiology 31:15.Google Scholar
Allmon, W. D. 2011. Natural history of turritelline gastropods (Cerithiodea: Turritellidae): a status report. Malacologia 54:159202.Google Scholar
Allmon, W. D. 2014. Studying species in the fossil record: a review and recommendations for a more unified approach. InAllmon, W. D., and Yacobucci, M. M., eds. Species and speciation in fossil animals. University of Chicago Press, Chicago(in press).Google Scholar
Alroy, J. 2003. Global databases will yield reliable measures of global biodiversity. Paleobiology 29:2629.Google Scholar
Alroy, J, Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105121.Google Scholar
Atran, S. 1987. Origin of the species and genus concepts: An anthropological perspective. Journal of the History of Biology 20:195279.Google Scholar
Badgley, C. 2003. The multiple scales of biodiversity. Paleobiology 29:1113.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:5157.Google Scholar
Backlund, A., and Bremer, K. 1998. To be or not to be—principles of classification and monotypic plant families. Taxon 47:391400.Google Scholar
Bentham, G. 1858 [read 1857]. Memorandum on the principles of generic nomenclature in botany, as referred to in the preceding paper. Journal of the Proceedings of the Linnean Society (Botany) 2:3033.Google Scholar
Benton, M. J., and Emerson, B. C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:2340.Google Scholar
Bertrand, Y., Pleijel, F., and Rouse, G. W. 2006. Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks. Systematics and Biodiversity 4:149159.Google Scholar
Bett, B. J., and Narayanaswamy, B. E. 2014. Genera as proxies for species α- and β-diversity: tested across a deep-water Atlantic-Arctic boundary. Marine Ecology. doi: 10.1111/maec.12100.Google Scholar
Bevilacqua, S., Terlizzi, A., Claudet, J., Fraschetti, S., and Boero, F. 2012. Taxonomic relatedness does not matter for species surrogacy in the assessment of community responses to environmental drivers. Journal of Applied Ecology 49:357366.Google Scholar
Bock, W. J., and Farrand, J. Jr. 1980. The number of species and genera of Recent birds: a contribution to comparative systematics. American Museum Novitates 2703:129.Google Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.Google Scholar
Brown, J. H., Stevens, G. C., and Kaufman, D. M. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27:597623.Google Scholar
Carlquist, S. 1974. Island biology. Columbia University Press, New York.Google Scholar
Cook, J. A., Lessa, E. P., and Hadly, E. A. 2000. Paleontology, phylogenetic patterns, and macroevolutionary processes in subterranean rodents. Pp. 332369inLacey, E., Patton, J. L., and Cameron, G., eds. Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago.Google Scholar
Cope, E. D. 1868. On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia 20:242300.Google Scholar
Cope, E. D. 1869. Synopsis of the Cyprinidae of Pennsylvania. Transactions of the American Philosophical Society, New Series 13:351410.CrossRefGoogle Scholar
Coyne, J. A. 1994. Ernst Mayr and the origin of species. Evolution 48:1930.Google Scholar
Coyne, J. A., and Orr, H. A. 2004. Speciation. Sinauer, Sunderland, Mass.Google Scholar
Crane, J. K. 2004. On the metaphysics of species. Philosophy of Science 71:156173.Google Scholar
Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.CrossRefGoogle Scholar
de Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56:879886.Google Scholar
Dietl, G. P., and Flessa, K. W. 2011. Conservation Paleobiology: putting the dead to work. Trends in Ecology and Evolution 26:3037.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141167.Google Scholar
Dubois, A. 1988. The genus in zoology: a contribution to the theory of evolutionary systematics. Mémoires du Muséum National d'Histoire Naturelle (Zoologie) 140:1122.Google Scholar
Duda, T. F., and Kohn, A. J. 2005. Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Molecular Phylogenetics and Evolution 34:257272.Google Scholar
Eldredge, N., and Salthe, S. N. 1984. Hierarchy and evolution. Oxford Surveys in Evolutionary Biology 1:182206.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W. III. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133145.CrossRefGoogle Scholar
Ellis, D. 1985. Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin 16:442461.Google Scholar
Elton, C. S. 1946. Competition and the structure of animal communities. Journal of Animal Ecology 15:5468.Google Scholar
Emmeche, C., K⊘ppe, S., S., and Stjernfelt, F. 1997. Explaining emergence: towards an ontology of levels. Journal for General Philosophy of Science 28:83119.CrossRefGoogle Scholar
Ereshefsky, M. 1992. Species, higher taxa, and the units of evolution. Pp. 381398inEreshevsky, M., ed. The units of evolution: essays on the nature of species. MIT Press, Cambridge.Google Scholar
ESRI (Environmental Systems Research Institute). 2006. ARCGIS version 9.2. ESRI, Redlands, Calif.Google Scholar
Finnegan, S., Payne, J. L., and Wang, S. C. 2008. The red queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.Google Scholar
Floeter, S. R., Ferreira, C. E. L., Dominici-Arosemena, A., and Zalmon, I. R. 2004. Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns. Journal of Fish Biology 64:16801699.Google Scholar
Foote, M. 1996. Evolutionary patterns in the fossil record. Evolution 50:111.CrossRefGoogle ScholarPubMed
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.Google Scholar
Foote, M. 2012. Evolutionary dynamics of taxonomic structure. Biology Letters 8:135138.Google Scholar
Foote, M., and Miller, A. I. 2013. Determinants of early survival in marine animal genera. Paleobiology 39:171192.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Forey, P. L., Fortey, R. A., Kendrick, P., and Smith, A. B. 2004. Taxonomy and fossils: a critical appraisal. Philosophical Transactions of the Royal Society of London B 359:639653.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Systematic Zoology 23:536544.Google Scholar
Ghiselin, M. T. 2002. Species concepts: the basis for controversy and reconciliation. Fish and Fisheries 3:151160.Google Scholar
Ghiselin, M. T. 2005. Taxonomy as the organization of knowledge. Proceedings of the California Academy of Sciences 56 (Suppl.):161169.Google Scholar
Gilinsky, N. L., and Signor, P. W., eds. 1991. Analytical paleobiology. Short Courses in Paleontology No. 4. Paleontological Society, Knoxville, Tenn.Google Scholar
Gillespie, R. G. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356359.Google Scholar
Gotelli, N. J., and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Granger, H. 1980. Aristotle and the genus-species relation. Southern Journal of Philosophy 18:3750.Google Scholar
Grant, V. 1963. The origin of adaptations. Columbia University Press, New York.Google Scholar
Grene, M. 1974. Is genus to species as matter to form? Aristotle and taxonomy. Synthese 28:5169.Google Scholar
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.CrossRefGoogle ScholarPubMed
Hausdorf, B. 2011. Progress towards a general species concept. Evolution 65:923931.Google Scholar
Heim, N. A., and Peters, S. E. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6 (5): e18946. doi:10.1371/journal.pone.0018946.Google Scholar
Heino, J., and Soininen, J. 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation 137:7889.Google Scholar
Hendricks, J. R., Lieberman, B. S., and Stigall, A. L. 2008. Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264:163175.Google Scholar
Hermsen, E. J., and Hendricks, J. R. 2006. The hierarchy of time. Palaios 21:403405.CrossRefGoogle Scholar
Hooker, J. D. 1860. The botany of the Antarctic Voyage, Part III. Flora Tasmaniae, Vol. I. Dicotyledones. Lovell Reeve, London.Google Scholar
Hull, D. L. 1976. Are species really individuals? Systemic Zoology 25:174191.Google Scholar
Hull, D. L. 1980. A matter of individuality. Philosophy of Science 45:335360.Google Scholar
Hunt, G., Roy, K., and Jablonski, D. 2005. Heritability of geographic range sizes revisited. American Naturalist 166:129135.Google Scholar
Imbrie, J. 1957. The species problem with fossil animals. InMayr, E., ed. The species problem. American Association for the Advancement of Science Publication 50:125153. American Association for the Advancement of Science, Washington, D.C.Google Scholar
International Commission on Zoological Nomenclature. 1999. International code of zoological nomenclature, fourth edition. International Commission on Zoological Nomenclature, London.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.CrossRefGoogle ScholarPubMed
Jablonski, D. 2002. Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences of the USA 99:81398144.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.Google Scholar
Jablonski, D. 2008a. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39:501524.Google Scholar
Jablonski, D. 2008b. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105 (Suppl. 1):1152811535.Google Scholar
Jablonski, D., and Finarelli, J. A. 2009. Congruence of morphologically-defined genera with molecular phylogenies. Proceedings of the National Academy of Sciences of the USA 106:82628266.CrossRefGoogle ScholarPubMed
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. The American Naturalist 168:556564.Google Scholar
Jarvinen, O. 1982. Species-to-genus ratios in biogeography: a historical note. Journal of Biogeography 9:363370.Google Scholar
Johnson, K. G. 2003. New data for old questions. Paleobiology 29:1921.Google Scholar
Jones, F. C. 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16:4569.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean-Meramician (Mississippian) crinoid clades. Paleobiology 24:155176.CrossRefGoogle Scholar
Kay, E. A. 1968. A review of the bivalved gastropods and a discussion of evolution within the Sacoglossa. Symposium of the Zoological Society of London 22:109134.Google Scholar
Kiessling, W., Simpson, C., and Foote, M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196198.Google Scholar
Kohn, A. J. 1990. Tempo and mode of evolution in Conidae. Malacologia 32:5567.Google Scholar
Krug, A.Z., and Patzkowsky, M. E. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435454.Google Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W. 2008. Species-genus ratios reflect a global history of diversification and range expansion in marine bivalves. Proceedings of the Royal Society of London B 275:11171123.Google Scholar
Lagomarcino, A. J., and Miller, A. I. 2012. The relationship between genus richness and geographic area in Late Cretaceous marine biotas: epicontinental sea versus open-ocean-facing settings. PLoS ONE 7 (8): e40472. doi:10.1371/journal.pone.0040472.Google Scholar
Lee, M. S. Y. 2003. Species concepts and species reality: salvaging a Linnaean rank. Journal of Evolutionary Biology 16:179188.Google Scholar
Lemen, C. A., and Freeman, P. W. 1984. The genus: a macroevolutionary problem. Evolution 38:12191237.Google Scholar
Lieberman, B. S. 2001. Analyzing speciation rates in macroevolutionary studies. Pp. 340358inAdrain, J. M., Edgecombe, G. D., and Lieberman, B. S., eds. Fossils, phylogeny, and form: an analytical approach. Kluwer Academic/Plenum, New York.Google Scholar
Lieberman, B. S., and Eldredge, N. 2014. What is punctuated equilibrium? What is macroevolution? A response to Pennell et al. Trends in Ecology and Evolution 29:185186.Google Scholar
Lieberman, B. S., and Vrba, E. S. 1995. Hierarchy theory, selection, and sorting. Bioscience 45:394399.Google Scholar
Lieberman, B. S., Miller, W. III, and Eldredge, N. 2007. Paleontological patterns, macroecological dynamics, and the evolutionary process. Evolutionary Biology 34:2848.Google Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range, and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.Google Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., and Stenseth, N. C. 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:60976102.Google Scholar
Lloyd, G. T., Young, J. R., and Smith, A. B. 2012. Taxonomic structure of the fossil record is shaped by sampling bias. Systematic Biology 61:8089.CrossRefGoogle ScholarPubMed
Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:9951003.Google Scholar
Marwick, J. 1957. Generic revision of the Turritellidae. Proceedings of the Malacological Society of London 32:144166.Google Scholar
Mayden, R. L. 2013. Species, trees, characters, and concepts: ongoing issues, diverse ideologies, and a time for reflection and change. Pp. 171192inYa, I., ed. The species problem: ongoing issues. InTech. http://dx.doi.org/10.5772/55046.Google Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.Google Scholar
McNeill, J., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J., Prud'homme van Reine, W. F., Smith, G. F., Wiersema, J. H., Turland, N. J., eds. 2012. International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154. Koeltz Scientific Books, Königstein.Google Scholar
Mellin, C., Delean, S., Caley, J., Edgar, G., Meekan, M., Pitcher, R., Przeslawski, R., Williams, A., and Bradshaw, C. 2011. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis. PLoS ONE 6 (6):e20141. doi:10.1371/journal.pone.0020141.Google Scholar
Miller, A. I. 2003. On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology 29:1518.Google Scholar
Moore, R. C. 1952. Treatise on invertebrate paleontology. Report submitted to the Council of the Paleontological Society November 1951. Geological Society of America, New York.Google Scholar
Moreira-Muñoz, A., and Muñoz-Schick, M. 2007. Classification, diversity, and distribution of Chilean Asteraceae: implications for biogeography and conservation. Diversity and Distributions 13:818828.Google Scholar
Musco, L., Terlizzi, A., Licciano, M., Giangrande, A. 2009. Taxonomic structure and the effectiveness of surrogates in environmental monitoring: a lesson from polychaetes. Marine Ecology Progress Series 383:199210.Google Scholar
Myers, C. E., and Saupe, E. E. 2013. A macroevolutionary expansion of the Modern Synthesis and the importance of extrinsic abiotic factors. Palaeontology 56:120. doi: 10.1111/pala.12053.Google Scholar
Myers, C. E., Mackenzie, R. A. III, and Lieberman, B. S. 2013. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.Google Scholar
Nee, S. 2003. In praise of the big picture. Paleobiology 29:810.Google Scholar
Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics 37:117.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 26:371385.Google Scholar
Nürnberg, S., and Aberhan, M. 2013. Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360372.Google Scholar
Okasha, S. 2012. Emergence, hierarchy, and top-down causation in evolutionary biology. Interface Focus 2:4954.Google Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artifact? Nature 330:248251.Google Scholar
Pauly, G. B., Hillis, D. M., and Cannatella, D. C. 2009. Taxonomic freedom and the role of official lists of species names. Herpetologica 65:115128.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.Google Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., Araújo, M. B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, N.J.Google Scholar
Plotnick, R. E., and Wagner, P. J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Polly, P. D., and Spang, R. L. 2002. History of paleontology. Pp. 69103inBaigrie, B. S., ed. History of modern science and mathematics, Vol. 4. Charles Scribner's Sons, New York.Google Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.CrossRefGoogle Scholar
Puillandre, N., Duda, T. F., Meyer, C., Olivera, B. M., and Bouchet, P. 2014. One, four or 100 genera? A new classification of the cone snails. Journal of Molluscan Studies (in press).Google Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.Google Scholar
Raup, D. M. 1979a. Biases in the fossil record of species and genera. Bulletin of Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M. 1979b. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217218.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.Google Scholar
Raup, D. M. 1991a. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.Google Scholar
Raup, D. M. 1991b. Extinction: bad genes or bad luck? W. W. Norton, New York.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Raup, D. M., and Stanley, S. M. 1978. Principles of paleontology, 2nd ed. Freeman, W. H., San Francisco.Google Scholar
Ricklefs, R. E. 2010. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences USA 107:12651272.Google Scholar
Rieseberg, L. H., and Burke, J. M. 2001. The biological reality of species: gene flow, selection, and collective evolution. Taxon 50:4767.Google Scholar
Robeck, H. E., Maley, C. C., and Donoghue, M. J. 2000. Taxonomy and temporal diversity patterns. Paleobiology 26:171187.Google Scholar
Röckel, D., Korn, W., and Kohn, A. J. 1995. Manual of the living Conidae, Vol. 1. Indo-Pacific Region. Christa Hemmen, Wiesbaden, Germany.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1996. Higher taxa in biodiversity studies: patterns from eastern Pacific marine molluscs. Philosophical Transactions of the Royal Society of London B 351:16051613.Google Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z., and Valentine, J. W. 2009. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London B 276:14851493.Google Scholar
Schmidt-Lebuhn, A. N. 2012. Fallacies and false premises—a critical assessment of the arguments for the recognition of paraphyletic taxa in botany. Cladistics 28:174187.Google Scholar
Selden, P. A. 2012. Treatise on Invertebrate Paleontology: a work in progress. Palaios 27:439442.Google Scholar
Sepkoski, D. 2012. Rereading the fossil record. University of Chicago Press, Chicago.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology 51:1125.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sepkoski, J. J. Jr. 1987. Reply to Patterson and Smith. Nature 330:251252.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Jablonski, D., and Foote, M.eds. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sepkoski, J. J. Jr., McKinney, F. K., and Lidgard, S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.Google Scholar
Signor, P. W. 1985. Real and apparent trends in species richness through time. Pp. 129150inValentine, J. W., ed. Phanerozoic diversity patterns: profiles of macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Simberloff, D. S. 1970 Taxonomic diversity of island biotas. Evolution 24:2347.Google Scholar
Simpson, G. G. 1961. Principles of animal taxonomy. Columbia University Press, New York.Google Scholar
Sims, H. J. 2003. Measures of global biodiversity dynamics (past and present) are meaningless … or are they? Introductory comments. Paleobiology 29:12.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.Google Scholar
Smith, A. B. 2003. Getting the measure of diversity. Paleobiology 29:3436.Google Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns in evolution. Evolutionary Biology 23:127216.Google Scholar
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., and Wolf, P. G. 2006. A classification for extant ferns. Taxon 55:705731.Google Scholar
Smith, U. E., and Hendricks, J. R. 2013. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Systematic Biology 62:366385.Google Scholar
Stanley, S. M. 1978. Chronospecies' longevities, the origin of genera, and the punctuational model of evolution. Paleobiology 4:2640.Google Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1982. Speciation and the fossil record. Pp. 4149inBarrigozzi, M., ed. Mechanisms of speciation. Alan R. Liss, New York.Google Scholar
Stanley, S. M. 2008. Predation defeats competition on the seafloor. Paleobiology 34:121.Google Scholar
Stevens, P. F. 1994. The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. Columbia University Press, New York.Google Scholar
Stevens, P. F. 1997. How to interpret botanical classifications: suggestions from history. BioScience 47:243250.Google Scholar
Stigall, A. L. 2010. Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian Invasion in the type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontologia Electronica 13:119.Google Scholar
Sylvester-Bradley, P. C. 1954. Form-genera in paleontology. Journal of Paleontology 28:333336.Google Scholar
Terlizzi, A., Anderson, M. J., Bevilacqua, S., Fraschetti, S., Włodarska-Kowalczuk, M., and Ellingsen, K. E. 2009. Beta diversity and taxonomic sufficiency: do higher-level taxa reflect heterogeneity in species composition? Diversity and Distributions 15:450458.Google Scholar
Tietje, M., and Kiessling, W. 2013. Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs. Journal of Biogeography 40:790799.Google Scholar
Todd, J. A., Jackson, J. B. C, Johnson, K. G, Fortunato, H. M, Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.Google Scholar
Tucker, J. K., and Tenorio, M. J. 2009. Systematic classification of Recent and fossil conoidean gastropods. Conchbooks, Hackenheim, Germany.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Berke, S. K. 2012. The sampling and estimation of marine paleodiversity patterns: implications of a Pliocene model. Paleobiology 39:120.Google Scholar
Vermeij, G. J., and Leighton, L. R. 2003. Does global diversity mean anything? Paleobiology 29:37.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:6184.Google Scholar
Vrba, E. S. 1984. What is species selection? Systematic Zoology 33:318328.Google Scholar
Vrba, E. S. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology 1:283300.Google Scholar
Vrba, E. S. 1989. Levels of selection and sorting with special reference to the species level. Oxford Surveys in Evolutionary Biology 6:111168.Google Scholar
Vrba, E. S., and Eldredge, N. 1984. Individuals, hierarchies and processes towards a more complete evolutionary theory. Paleobiology 10:146171.Google Scholar
Vrba, E. S., and Gould, S. J. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217228.Google Scholar
Wagner, P. J. 1995. Diversity patterns among early gastropods: contrasting taxonomic and phylogenetic descriptions. Paleobiology 21:410439.Google Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on sampling-standardized estimates of historical diversity. Proceedings of the Royal Society of London B 274:439444.Google Scholar
Webb, T. J., and Gaston, K. J. 2003. On the heritability of geographic range sizes. The American Naturalist 161:553566.Google Scholar
Whittaker, R. J., Triantis, K. A., and Ladle, R. J. 2008. A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35:977994Google Scholar
Wiley, E. O., and Lieberman, B. S. 2011. The theory and practice of phylogenetic systematics, 2nd ed. Wiley-Blackwell, Hoboken, N.J.Google Scholar
Wilkinson, B. H. 2011. On taxonomic membership. Paleobiology 37:519536.Google Scholar
Williams, P. H., and Gaston, K. J. 1994. Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation 67:211217.Google Scholar
Willig, M. R. 2003. Challenges to understanding dynamics of biodiversity in time and space. Paleobiology 29:3033.Google Scholar
Willis, J. C. 1922. Age and area: a study in geographical distribution and the origin of species. Cambridge University Press, CambridgeGoogle Scholar
Wilson, E. O. 2003. On global biodiversity estimates. Paleobiology 29:14.Google Scholar
Wood, B., and Collard, M. 1999. The human genus. Science 284:6571.Google Scholar
Wright, D. F., and Stigall, A. L. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLoS ONE 8 (7):e68353. doi:10.1371/journal.pone.0068353.Google Scholar
Wu, R. S. S. 1982. Effects of taxonomic uncertainty on species diversity indices. Marine Environmental Research 6:215225.Google Scholar
Zaffos, A., and Holland, S. M. 2012. Abundance and extinction in Ordovician–Silurian brachiopods, Cincinnati Arch, Ohio and Kentucky. Paleobiology 38:278291.Google Scholar
Zaragüeta Bagils, R., Lelièvre, H., and Tassy, P. 2004. Temporal paralogy, cladograms, and the quality of the fossil record. Geodiversitas 26:381389.Google Scholar