Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jtg5s Total loading time: 0.168 Render date: 2021-09-21T12:27:31.227Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Evolution of ammonoid morphospace during the Early Jurassic radiation

Published online by Cambridge University Press:  14 July 2015

Jean-Louis Dommergues
Affiliation:
Centre des Sciences de la Terre et U.M.R. C.N.R.S. 5561, Université de Bourgogne, 6 boulevard Gabriel, F 21000 Dijon, France. E-mail: jldommer@satie.u-bourgogne.fr, blaurin@satie.u-bourgogne.fr
Bernard Laurin
Affiliation:
Centre des Sciences de la Terre et U.M.R. C.N.R.S. 5561, Université de Bourgogne, 6 boulevard Gabriel, F 21000 Dijon, France. E-mail: jldommer@satie.u-bourgogne.fr, blaurin@satie.u-bourgogne.fr
Christian Meister
Affiliation:
Département de Géologie et Paléontologie, Muséum d'Histoire Naturelle, 1 route de Malagnou, cp 634, CH 1211 Genève 6, Switzerland. E-mail: meister@musinfo.ville-ge.ch

Abstract

The morphologic radiation of Early Jurassic ammonites following the near extinction at the end of the Triassic is analyzed from 436 species of 156 genera that form a representative sample of morphs occurring worldwide in the first three stages of the Jurassic (Hettangian, Sinemurian, Pliensbachian: 36 subzones, 24 m.y.). Morphologic diversity is analyzed independently of taxonomy by processing 18 shape parameters using multivariate analysis and clustering techniques. The morphospace thus defined indicates that morphs fall readily into two groups made up of four and five adjacent morpho-subsets. The temporal pattern of morphospace occupation in the 36 Lower Jurassic subzones displays diversification, depletion (sometimes total), and displacement of successive parts of the morphospace, reflecting a complex history in which morphologic radiation appears to be more than a process of diffusion. The history of the morphologic evolution is tentatively related to sea-level changes and there is a suggestion that morphologic diversity increases during second-order transgressive periods.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.D.D.A.D. 1989. Logiciel d'Analyse des données, Version 89-micro. A.D.D.A.D., Paris.Google Scholar
Arkell, W. J., Kummel, B., and Wright, C. W. 1957. Mesozoic Ammonoidea. Pp. L80L437In Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, C. H., Sylvester-Bradley, P. C., and Wright, C. W., eds. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kans.Google Scholar
Batt, R. J. 1989. Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:3242.CrossRefGoogle Scholar
Becker, R. T. 1993. Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity. pp. 115163in House 1993a.Google Scholar
Benton, M. J. 1990. Vertebrate palaeontology, biology and evolution. Harper Collins Academic, London.Google Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Benzécri, J.-P. 1973. L'analyse des données, 2, L'Analyse des correspondances. Dunod, Paris.Google Scholar
Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Chamberlain, J.A. 1981. Hydromechanical design of fossil cephalopods. pp. 289336In House, M. R. and Senior, J. R., eds. The Ammonoidea. Academic Press, London.Google Scholar
Foote, M. 1991. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., van Veen, P., Thierry, J., and Huang, Z. 1994. A Mesozoic time scale. Journal of Geophysical Research 99:5174.CrossRefGoogle Scholar
Guex, J. 1982. Relations entre le genre Psiloceras et les Phylloceratida au voisinage de la limite Trias-Jurassique. Bulletin de la Société vaudoise des Sciences naturelles 76:4751.Google Scholar
Guex, J. 1987. Sur la phylogenèse des ammonites du Lias inférieur. Bulletin de la Socitété vaudoise des Sciences naturelles 78:455469.Google Scholar
Hallam, A. 1988. A reevaluation of the Jurassic eustasy in the light of new data and revised Exxon curve. pp. 261273In Wilgus, C. K., Hastings, B. S., Kendall, C. G. S. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds. Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists, Special Publication No. 42. Tulsa, Okla.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561157.CrossRefGoogle ScholarPubMed
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geological time scale 1989. Cambridge University Press, Cambridge.Google Scholar
House, M. R. 1993a. The Ammonoidea: environment, ecology, and evolutionary change. Clarendon, OxfordGoogle Scholar
House, M. R. 1993b. Fluctuations in ammonoid evolution and possible environmental controls. pp. 1334in House 1993a.Google Scholar
House, M. R., and Senior, J. R. 1981. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Academic Press, London.Google Scholar
Odin, G. S. 1994. Geological time scale. Comptes-Rendus de l'Académie des Sciences de Paris 318:5971.Google Scholar
Raküs, M. 1993. Late Triasic and Early Jurassic phylloceratids from the Salzkammergut (Northern Calcareous Alps). Jahrbuch der Geologischen Bundesanstalt 136:933963.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M., and Crick, R. E. 1982. Kosmoceras: evolutionary jumps and sedimentary breaks. Paleobiology 8:90100.CrossRefGoogle Scholar
Reyment, R. A. 1991. Multidimensional palaeobiology. Pergamon, Oxford.Google Scholar
Reyment, R. A., and Kennedy, W. J. 1991. Phenotypic plasticity in a Cretaceous ammonite analysed by multivariate statistical methods. Evolutionary Biology 25:411426.Google Scholar
Saunders, W. B., and Swan, R. H. 1984. Morphology and morphometric diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.CrossRefGoogle Scholar
Sowerby, J. 1812. The Mineral conchology of Great Britain. Arding, London.Google Scholar
Stanley, S. M. 1979. Macroevolution, pattern and process. W. H. Freeman, San Francisco.Google Scholar
Tintant, H., Marchand, D., and Mouterde, R. 1982. Relations entre les milieux marins et l'évolution des Ammonoïdés: les radiations adaptatives du Lias. Bulletin de la Société géologique de France 24:951961.CrossRefGoogle Scholar
Tozer, E. T. 1981. Triassic Ammonoidea: classification, evolution and relationship with Permian and Jurassic forms. pp. 65100In House, M. R. and Senior, J. R., eds. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Academic Press, London.Google Scholar
Ward, P. 1980. Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic–Tertiary nautilids. Paleobiology 6:3243.CrossRefGoogle Scholar
Westermann, G. E. G. 1990. New developments in ecology of Jurassic–Cretaceous ammonoids. pp. 459478In Pallini, G., Cecca, F., Cresta, S., and Santantonio, M., eds. Atti del secondo Convengo internazionale, Fossili, evoluzion, ambiente, Pergola 25-30 ottobre 1987. Comitato Centenario Raffaele Piccinini, Pergola.Google Scholar
Westermann, G. E. G. 1993. Global bioevents in mid-Jurassic ammonites controled by seaways. pp. 187226in House 1993a.Google Scholar
Ziegler, B. 1967. Ammonites ökologie am Beispiel des Oberjura. Geologische Rundschau 56:439464.CrossRefGoogle Scholar
60
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evolution of ammonoid morphospace during the Early Jurassic radiation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evolution of ammonoid morphospace during the Early Jurassic radiation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evolution of ammonoid morphospace during the Early Jurassic radiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *