Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-21T14:51:57.563Z Has data issue: false hasContentIssue false

Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene

Published online by Cambridge University Press:  08 February 2016

Julio Aguirre
Affiliation:
Department of Earth Sciences, Cardiff University, Cardiff CF1 3YE, United Kingdom. E-mail: riding@cardiff.ac.uk
Robert Riding
Affiliation:
Department of Earth Sciences, Cardiff University, Cardiff CF1 3YE, United Kingdom. E-mail: riding@cardiff.ac.uk
Juan C. Braga
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain. E-mail: jbraga@goliat.ugr.es

Abstract

Data from a comprehensive literature survey for the first time provide stage-level resolution of Early Cretaceous through Pleistocene species diversity for nongeniculate coralline algae. Distributions of a total of 655 species in 23 genera were compiled from 222 publications. These represent three family-subfamily groupings each with distinctive present-day distributions: (1) Sporolithaceae, low latitude, mainly deep water; (2) Melobesioid corallinaceans, high latitude, shallow water, to low latitude, deep water; (3) Lithophylloid/mastophoroid corallinaceans, mid- to low latitude, shallow water.

Raw data show overall Early Cretaceous-early Miocene increase to 245 species in the Aquitanian, followed by collapse to only 43 species in the late Pliocene. Rarefaction analysis confirms the pattern of increase but suggests that scarcity of publications exaggerates Neogene decline, which was actually relatively slight.

Throughout the history of coralline species, species richness broadly correlates with published global paleotemperatures based on benthic foraminifer δ18O values. The warm-water Sporolithaceae were most species-abundant during the Cretaceous, but they declined and were rapidly overtaken by the Corallinaceae as Cenozoic temperatures declined.

Trends within the Corallinaceae during the Cenozoic appear to reflect environmental change and disturbance. Cool- and deep-water melobesioids rapidly expanded during the latest Cretaceous and Paleocene. Warmer-water lithophylloid/mastophoroid species increased slowly during the same period but more quickly in the early Oligocene, possibly reflecting habitat partitioning as climatic belts differentiated and scleractinian reef development expanded near the Eocene/Oligocene boundary. Melobesioids abruptly declined in the late Pliocene-Pleistocene, while lithophylloid/mastophoroids increased again. Possibly, onset of glaciation in the Northern Hemisphere (~2.4 Ma) sustained or accentuated latitudinal differentiation and global climatic deterioration, disrupting high-latitude melobesioid habitats. Simultaneously, this could have caused moderate environmental disturbance in mid- to low-latitude ecosystems, promoting diversification of lithophylloids/mastophoroids through the “fission effect.”

Extinction events that eliminated >20% of coralline species were most severe (58–67% of species) during the Late Cretaceous and late Miocene-Pliocene. Each extinction was followed by substantial episodes of origination, particularly in the Danian and Pleistocene.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adey, W. H. 1986. Coralline algae as indicators of sea-level. Pp. 229280in van de Plassche, O., ed. Sea-level research: a manual for the collection and evaluation of data. Free University of Amsterdam, Amsterdam.CrossRefGoogle Scholar
Adey, W. H., and Macintyre, I. G. 1973. Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin 84:883904.2.0.CO;2>CrossRefGoogle Scholar
Adey, W. H., and McKibbin, D. 1970. Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Botanica Marina 13:100106.CrossRefGoogle Scholar
Adey, W. H., Townsend, R. A., and Boykins, W. T. 1982. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithsonian Contributions to Marine Sciences 15:174.CrossRefGoogle Scholar
Aguirre, J., and Braga, J. C. 1998. Redescription of Lemoine's (1939) types of coralline algal species from Algeria. Palaeontology 41:489507.Google Scholar
Aguirre, J., Braga, J. C., and Piller, W. 1996. Reassessment of Palaeothamnium Conti, 1946 (Corallinaceae, Rhodophyta). Review of Palaeobotany and Palynology 94:19.CrossRefGoogle Scholar
Aguirre, J., Riding, R., and Braga, J. C. 1997. Extinction and recovery of benthic marine calcified algae at the Cretaceous-Tertiary boundary. European Union of Geosciences meeting, Strasbourg, France, Abstract Supplement No. 1, Terra Nova 9:280.Google Scholar
Aguirre, J., Riding, R., and Braga, J. C. 2000. Late Cretaceous incident light reduction: evidence from benthic algae. Lethaia 33 (in press).CrossRefGoogle Scholar
Arias, C., Masse, J. P., and Vilas, L. 1995. Hauterivian shallow marine calcareous biogenic mounds: S. E. Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 119:317.CrossRefGoogle Scholar
Bailey, J. C. 1999. Phylogenetic position of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analysis, with a revised classification of the Lithophylloideae. Phycologia 38:208216.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Barry, G. C., and Woelkerling, W. J. 1995. Non-geniculate species of Corallinaceae (Corallinales, Rhodophyta) in Shark Bay, Western Australia: biodiversity, salinity tolerances and biogeographic affinities. Botanica Marina 38:135149.CrossRefGoogle Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54:129212.CrossRefGoogle Scholar
Bosence, D. W. J. 1983. The occurrence and ecology of recent rhodoliths (rhodoids, rhodolites). Pp. 225242in Peryt, T. M., ed. Coated grains. Springer, Berlin.CrossRefGoogle Scholar
Bosence, D. W. J. 1991. Coralline algae: mineralization, taxonomy, and palaeoecology. Pp. 98113in Riding, R., ed. Calcareous algae and stromatolites. Springer, Berlin.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Braga, J. C., and Aguirre, J. 1995. Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Review of Palaeobotany and Palynology 86:265285.CrossRefGoogle Scholar
Braga, J. C., Bosence, D. W. J., and Steneck, R. S. 1993. New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535547.Google Scholar
Brooke, C., and Riding, R. 1998. Ordovician and Silurian coralline red algae. Lethaia 31:185195.CrossRefGoogle Scholar
Buzas, M. A. 1990. Another look at confidence limits for species proportions. Journal of Paleontology 64:842843.CrossRefGoogle Scholar
Chuvashov, B. I. 1971. A new genus of Late Paleozoic red algae. Paleontological Journal 5:216220.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates. Pp. 67106in Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population biology and evolution of clonal organisms. Yale University Press, New Haven, Conn.Google Scholar
Corfield, R. M. 1987. Patterns of evolution in Palaeocene and Eocene planktonic foraminifera. Pp. 93110in Hart, M. B., ed. Micropalaeontology of carbonate environments. Ellis Horwood, Chichester, England.Google Scholar
Culver, S. L., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology 13:169176.CrossRefGoogle Scholar
Dragastan, O. 1971. New algae in the upper Jurassic and lower Cretaceous in the Bicaz Valley East Carpathians (Romania). Revista Española de Micropaleontología 3:155192.Google Scholar
Elliott, G. F. 1959. New calcareous algae from the Cretaceous of Iraq. Révue de Micropaléontologie 1:217222.Google Scholar
Endo, R. 1961. Phylogenetic relationships among the calcareous algae. Science Reports of Saitama University (Biology and Earth Sciences), Endo Commemoration Vol.Google Scholar
Flessa, K. W. 1990. The “facts” of mass extinctions. Pp. 17in Sharpton, and Ward, 1990.Google Scholar
Fravega, P., Piazza, M., and Vannucci, G. 1989. Archaeolithothamnium Rothpletz. Indicatore ecologico-stratigrafico? Atti 3° Simposio di Ecologia e paleoecologia delle comunità bentoniche 729743.Google Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Handerbol, J., Veen, P. V., Thierry, J., and Huang, Z. 1995. A Triassic, Jurassic and Cretaceous time scale. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54:95126.CrossRefGoogle Scholar
Haq, B. V., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.CrossRefGoogle ScholarPubMed
Harvey, A. S., and Woelkerling, W. J. 1995. An account of Austrolithon intumescens gen. et sp. nov. and Boreolithon van-heurckii (Heydrich) gen. et comb. nov. (Austrolithoideae subfam. nov., Corallinaceae, Rhodophyta). Phycologia 34:362382.CrossRefGoogle Scholar
Hurlbert, S. H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577586.CrossRefGoogle Scholar
Ishijima, W. 1954. Cenozoic coralline algae from the western Pacific. Privately published, Tokyo.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. Pp. 2175in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Johnson, J. H. 1957. Geology of Saipan, Mariana Islands. Calcareous algae. U.S. Geological Survey Professional Paper 280:209246.CrossRefGoogle Scholar
Johnson, J. H. 1961. Fossil algae from Eniwetok, Funafuti, and Kita-Daito-Jima. U.S. Geological Survey Professional Paper 260-Z:907950.Google Scholar
Johnson, J. H. 1962. The algal genus Lithothamnium and its fossil representatives. Colorado School of Mines Quarterly 57:1111.Google Scholar
Johnson, J. H. 1963. The algal genus Archaeolithothamnium and its fossil representatives. Journal of Paleontology 37:175211.Google Scholar
Johnson, J. H. 1966. Tertiary red algae from Borneo. Bulletin of the British Museum (Natural History) Geology 2:257280.Google Scholar
Johnson, J. H., and Adey, W. H. 1965. Studies of Lithophyllum and related algal genera. Colorado School of Mines Quarterly 60:1105.Google Scholar
Lemoine, M. P. 1970. Les algues floridées calcaires du Crétacé du sud de la France. Archives du Muséum Nationale d'Histoire Naturelle, Paris, série 7, 10:129240.Google Scholar
Lemoine, M. P. 1977. Les difficultés de la philogénie chez les algues Corallinacées. Bulletin de la Societé Géologique du France 19:13191325.CrossRefGoogle Scholar
Littler, M. M., Littler, D. S., Blair, S. M., and Norris, J. N. 1986. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Research 33:881892.CrossRefGoogle Scholar
Maslov, V. P. 1956. Iskopaemye izvestkovye vodorosli SSSR. [Fossil calcareous algae of the U.S.S.R.] Trudy Instituta Geologicheskikh Nauk AN SSSR 160:1302. Nauka, Moscow. [In Russian.]Google Scholar
Minnery, G. A., Rezak, R., and Bright, T. J. 1985. Depth zonation and growth form of crustose coralline algae: Flower Garden Banks, Northwestern Gulf of Mexico. Pp. 237246in Toomey, D. F. and Nitecki, M. H., eds. Paleoalgology: contemporary research and applications. Springer, Berlin.CrossRefGoogle Scholar
Moussavian, E. 1991. New aspects of the phylogeny of coralline red algae (Rhodophyta): Cretaceous-Recent. Fifth international symposium on fossil algae, Capri, Italy, Abstracts, pp. 7273.Google Scholar
Moussavian, E., Salas, R., and Martin Closas, C. 1993. Evidence of modern red algae (Corallinaceae, Peyssonneliaceae) in the pre-Barremian Cretaceous. Alpine algae, 1993 meeting, Munich, Abstracts.Google Scholar
Perrin, C., Bosence, D. W. J., and Rosen, B. 1995. Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In Bosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society Special Publication 83:181229. Geological Society of London.Google Scholar
Poignant, A. F. 1974. Les algues calcaires fossiles: leur intérêt stratigraphique. Newsletter Stratigraphy 3:181192.CrossRefGoogle Scholar
Poignant, A. F. 1978. Les algues rouges crétacées: relations mer Boréale-Téthys. In Aspekte der Kreide Europas. International Union of Geological Sciences A 6:273278.Google Scholar
Poignant, A. F. 1981. Sur des formes nouvelles d'algues rouges crétacées. Cretaceous Research 2:187195.CrossRefGoogle Scholar
Poignant, A. F., and Lobitzer, H. 1982. Les algues de l'Albien supérieur du Nigéria. Cahiers Micropaléontologie 2:3540.Google Scholar
Poncet, J., and Morzadec, P. 1993. Lasneria globosa gen. et sp. nov., Corallinaceae ancestrale Dévonien inférieur du Massif armoricain, France. Review of Palaeobotany and Palynology 77:263272.CrossRefGoogle Scholar
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.CrossRefGoogle Scholar
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1991. The future of analytical paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:207216. Paleontological Society, Knoxville, Tenn.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinctions in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 231:833836.CrossRefGoogle ScholarPubMed
Riding, R. 1993. Calcareous algae. Pp. 7881in Kearey, P., ed. The encyclopedia of the solid Earth sciences. Blackwell Scientific, Oxford.Google Scholar
Riding, R., Cope, J. C. W., and Taylor, P. D. 1998. A coralline-like red alga from the Lower Ordovician of Wales. Palaeontology 41:10691076.Google Scholar
Romanes, M. F. 1916. Note on an algal limestone from Angola. Transactions of the Royal Society of Edinburgh 16:581584.Google Scholar
Savin, S. M. 1977. The history of the Earth's surface temperature during the last 100 million years. Annual Review of Earth and Planetary Sciences 5:319355.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277296in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1989. Periodicity in extinction and problem of catastrophism in the history of life. Journal of the Geological Society of London 146:719.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1990. The taxonomic structure of periodic extinction. Pp. 3344in Sharpton, and Ward, 1990.Google Scholar
Sepkoski, J. J. Jr., and Koch, C. F. 1996. Evaluating paleontologic data relating to bio-events. Pp. 2134in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.CrossRefGoogle Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Kumsiek, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620623.CrossRefGoogle Scholar
Sharpton, V. L., and Ward, P. D., eds. 1990. Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247.Google Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325328.CrossRefGoogle Scholar
Sheehan, P. M. 1985. Reefs are not so different. They follow the evolutionary pattern of level-bottom communities. Geology 13:4649.2.0.CO;2>CrossRefGoogle Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.CrossRefGoogle Scholar
Steneck, R. S. 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. Pp. 352366in Toomey, D. F. and Nitecki, M. H., eds. Paleoalgology: contemporary research and applications. Springer, Berlin.CrossRefGoogle Scholar
Steneck, R. S., and Adey, W. H. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Botanica Marina 19:197215.CrossRefGoogle Scholar
Thomas, E. 1990. Late Cretaceous-early Eocene mass extinctions in the deep sea. Pp. 481495in Sharpton, and Ward, 1990.Google Scholar
Thornton, S. E., Pilkey, O. H., and Lynts, G. W. 1978. A lagoonal crustose coralline algal micro-ridge: Bihivet El Bibane, Tunisia. Journal of Sedimentary Petrology 48:743750.Google Scholar
Townsend, R. A., Chamberlain, Y. M., and Keats, D. W. 1994. Heydrichia woelkerlingii gen. et sp. nov., a newly discovered nongeniculate red alga (Corallinales, Rhodophyta) from Cape Province, South Africa. Phycologia 33:177186.CrossRefGoogle Scholar
Townsend, R. A., Woelkerling, W. J., Harvey, A. S., and Borowitzka, M. 1995. An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8:85121.CrossRefGoogle Scholar
Verheij, E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 32:184196.CrossRefGoogle Scholar
Woelkerling, W. J. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, Oxford.Google Scholar
Womersley, H. B. S. 1996. The marine benthic flora of southern Australia, Rhodophyta, Part IIIB. Flora of Australia supplementary series 5. Australian Biological Resources Study, Canberra.Google Scholar
Wray, J. L. 1977a. Late Paleozoic calcareous red algae. Pp. 167176in Flügel, E., ed. Fossil algae, recent results and developments. Springer, Berlin.CrossRefGoogle Scholar
Wray, J. L. 1977b. Calcareous algae. Elsevier, Amsterdam.Google Scholar
Zachos, J. C., Quinn, T. M., and Salamy, K. A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11:251266.CrossRefGoogle Scholar