Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T11:04:53.265Z Has data issue: false hasContentIssue false

Trimethylamine N-oxide: heart of the microbiota–CVD nexus?

Published online by Cambridge University Press:  28 July 2020

Saba Naghipour
Affiliation:
School of Medical Science, Griffith University, Southport, QLD, Australia
Amanda J. Cox
Affiliation:
School of Medical Science, Griffith University, Southport, QLD, Australia
Jason N. Peart
Affiliation:
School of Medical Science, Griffith University, Southport, QLD, Australia
Eugene F. Du Toit
Affiliation:
School of Medical Science, Griffith University, Southport, QLD, Australia
John P. Headrick*
Affiliation:
School of Medical Science, Griffith University, Southport, QLD, Australia
*
*Corresponding author: Professor John Headrick, fax +61 7 5552 8802, email j.headrick@griffith.edu.au

Abstract

We critically review potential involvement of trimethylamine N-oxide (TMAO) as a link between diet, the gut microbiota and CVD. Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin-containing mono-oxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25 % of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or CHD is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, scavenger receptors and RCT (≥100 µm) are only achieved in advanced heart failure or chronic kidney disease (CKD), and greatly exceed pathogenicity of <1–5 µm levels implied in some TMAO–CVD associations. There is also evidence that CVD risk is insensitive to TMAO variance beyond these levels in omnivores and vegetarians, and that major TMAO sources are cardioprotective. Assessing available evidence suggests that modest elevations in TMAO (≤10 µm) are a non-pathogenic consequence of diverse risk factors (ageing, obesity, dyslipidaemia, insulin resistance/diabetes, renal dysfunction), indirectly reflecting CVD risk without participating mechanistically. Nonetheless, TMAO may surpass a pathogenic threshold as a consequence of CVD/CKD, secondarily promoting disease progression. TMAO might thus reflect early CVD risk while providing a prognostic biomarker or secondary target in established disease, although mechanistic contributions to CVD await confirmation.

Type
Review Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blum, HE (2017) The human microbiome. Adv Med Sci 62, 414420.CrossRefGoogle ScholarPubMed
Wang, Z, Klipfell, E, Bennett, BJ, et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 5763.CrossRefGoogle ScholarPubMed
Siri-Tarino, PW, Sun, Q, Hu, FB, et al. (2010) Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr 91, 535546.CrossRefGoogle ScholarPubMed
Mohammadi, A, Vahabzadeh, Z, Jamalzadeh, S, et al. (2018) Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages. Adv Med Sci 63, 5763.CrossRefGoogle ScholarPubMed
Mohammadi, A, Najar, AG, Yaghoobi, MM, et al. (2016) Trimethylamine-N-oxide treatment induces changes in the ATP-binding cassette transporter A1 and scavenger receptor A1 in murine macrophage J774A.1 cells. Inflammation 39, 393404.CrossRefGoogle ScholarPubMed
Seldin, MM, Meng, Y, Qi, H, et al. (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc 5, e002767.CrossRefGoogle ScholarPubMed
Chen, ML, Zhu, XH, Ran, L, et al. (2017) Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc 6, e006347.CrossRefGoogle ScholarPubMed
Li, T, Chen, Y, Gua, C, et al. (2017) Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front Physiol 8, 350.CrossRefGoogle ScholarPubMed
Chen, ML, Yi, L, Zhang, Y, et al. (2016) Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 7, e02210e02215.CrossRefGoogle ScholarPubMed
Chen, K, Zheng, X, Feng, M, et al. (2017) Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in Western diet-induced obese mice. Front Physiol 8, 139.CrossRefGoogle ScholarPubMed
Sun, G, Yin, Z, Liu, N, et al. (2017) Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 493, 964970.CrossRefGoogle Scholar
Gao, X, Liu, X, Xu, J, et al. (2014) Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 118, 476481.CrossRefGoogle ScholarPubMed
Zhang, H, Meng, J & Yu, H (2017) Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a Western diet. Front Physiol 8, 944.CrossRefGoogle ScholarPubMed
Tang, WH, Wang, Z, Levison, BS, et al. (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368, 15751584.CrossRefGoogle ScholarPubMed
Stubbs, JR, House, JA, Ocque, AJ, et al. (2016) Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 27, 305313.CrossRefGoogle ScholarPubMed
Heianza, Y, Ma, W, Manson, JE, et al. (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc 6, e004947.CrossRefGoogle ScholarPubMed
Mente, A, Chalcraft, K, Ak, H, et al. (2015) The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 31, 11891194.CrossRefGoogle Scholar
Mafune, A, Iwamoto, T, Tsutsumi, Y, et al. (2016) Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exp Nephrol 20, 731739.CrossRefGoogle ScholarPubMed
Sun, X, Jiao, X, Ma, Y, et al. (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481, 6370.CrossRefGoogle ScholarPubMed
Koeth, RA, Wang, Z, Levison, BS, et al. (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19, 576585.CrossRefGoogle ScholarPubMed
Zhu, W, Gregory, JC, Org, E, et al. (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111124.CrossRefGoogle ScholarPubMed
Roberts, AB, Gu, X, Buffa, JA, et al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24, 14071417.CrossRefGoogle ScholarPubMed
Wang, Z, Roberts, AB, Buffa, JA, et al. (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 15851595.CrossRefGoogle ScholarPubMed
Xue, J, Zhou, D, Poulsen, O, et al. (2017) Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-oxide. Am J Respir Cell Mol Biol 57, 581588.CrossRefGoogle ScholarPubMed
Collins, HL, Drazul-Schrader, D, Sulpizio, AC, et al. (2016) l-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE–/– transgenic mice expressing CETP. Atherosclerosis 244, 2937.CrossRefGoogle ScholarPubMed
Veeravalli, S, Karu, K, Scott, F, et al. (2018) Effect of flavin-containing monooxygenase genotype, mouse strain, and gender on trimethylamine N-oxide production, plasma cholesterol concentration, and an index of atherosclerosis. Drug Metab Dispos 46, 2025.CrossRefGoogle Scholar
Geng, J, Yang, C, Wang, B, et al. (2018) Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 97, 941947.CrossRefGoogle ScholarPubMed
Bennett, BJ, de Aguiar Vallim, TQ, Wang, Z, et al. (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17, 4960.CrossRefGoogle ScholarPubMed
Velasquez, MT, Ramezani, A, Manal, A, et al. (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel) 8, 326.CrossRefGoogle ScholarPubMed
Kunjathoor, VV, Febbraio, M, Podrez, EA, et al. (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277, 4998249988.CrossRefGoogle ScholarPubMed
Ben, J, Zhu, X, Zhang, H, et al. (2015) Class A1 scavenger receptors in cardiovascular diseases. Br J Pharmacol 172, 55235530.CrossRefGoogle ScholarPubMed
Cucuianu, M, Coca, M & Hancu, N (2007) Reverse cholesterol transport and atherosclerosis. A mini review. Rom J Intern Med 45, 1727.Google ScholarPubMed
Trenteseaux, C, Gaston, AT, Aguesse, A, et al. (2017) Perinatal hypercholesterolemic exacerbates atherosclerosis lesions in offspring by altering metabolism of trimethylamine-N-oxide and bile acids. Arterioscler Thromb Vasc Biol 37, 20532063.CrossRefGoogle ScholarPubMed
Pullinger, CR, Eng, C, Salen, G, et al. (2002) Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110, 109117.CrossRefGoogle Scholar
Ross, R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340, 115126.CrossRefGoogle ScholarPubMed
Wong, BW, Meredith, A, Lin, D, et al. (2012) The biological role of inflammation in atherosclerosis. Can J Cardiol 28, 631641.CrossRefGoogle ScholarPubMed
Zhang, X, Li, Y, Yang, P, et al. (2020) Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals. Arterioscler Thromb Vasc Biol 40, 751765.CrossRefGoogle ScholarPubMed
Suska, A, Ibanez, AB, Lundstrom, I, et al. (2009) G protein-coupled receptor mediated trimethylamine sensing. Biosens Bioelectron 25, 715720.CrossRefGoogle ScholarPubMed
Li, T, Gua, C, Wu, B, et al. (2018) Increased circulating trimethylamine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease. Biochem Biophys Res Commun 495, 20712077.CrossRefGoogle Scholar
Ke, Y, Li, D, Zhao, M, et al. (2018) Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med 116, 88100.CrossRefGoogle ScholarPubMed
Matsumoto, T, Kojima, M, Takayanagi, K, et al. (2020) Trimethylamine-N-oxide specifically impairs endothelium-derived hyperpolarizing factor-type relaxation in rat femoral artery. Biol Pharm Bull 43, 569573.CrossRefGoogle ScholarPubMed
Ufnal, M, Jazwiec, R, Dadlez, M, et al. (2014) Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol 30, 17001705.CrossRefGoogle ScholarPubMed
Li, D, Ke, Y, Zhan, R, et al. (2018) Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 2018, e12768.CrossRefGoogle Scholar
Brunt, VE, Gioscia-Ryan, RA, Richey, JJ, et al. (2019) Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. J Physiol 597, 23612378.CrossRefGoogle ScholarPubMed
Li, X, Sun, Y, Zhang, X, et al. (2019) Reductions in gut microbiota-derived metabolite trimethylamine N-oxide in the circulation may ameliorate myocardial infarction-induced heart failure in rats, possibly by inhibiting interleukin-8 secretion. Mol Med Rep 20, 779786.Google Scholar
Organ, CL, Otsuka, H, Bhushan, S, et al. (2016) Choline diet and its gut microbe derived metabolite, trimethylamine N-oxide (TMAO), exacerbate pressure overload-induced heart failure. Circ Heart Fail 9, e002314.CrossRefGoogle Scholar
Savi, M, Bocchi, L, Bresciani, L, et al. (2018) Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide. Molecules 23, 549.CrossRefGoogle ScholarPubMed
Makrecka-Kuka, M, Volska, K, Antone, U, et al. (2017) Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett 267, 3238.CrossRefGoogle ScholarPubMed
Jin, B, Ji, F, Zuo, A, et al. (2020) Destructive role of TMAO in T-tubule and excitation-contraction coupling in the adult cardiomyocytes. Int Heart J 61, 355363.CrossRefGoogle ScholarPubMed
Oakley, CI, Vallejo, JA, Wang, D, et al. (2020) Trimethylamine-N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 318, H1272H1282.CrossRefGoogle ScholarPubMed
Jaworska, K, Hering, D, Mosieniak, G, et al. (2019) TMA, a forgotten uremic toxin, but not TMAO, is involved in cardiovascular pathology. Toxins (Basel) 11, 490.CrossRefGoogle Scholar
Yu, L, Meng, G, Huang, B, et al. (2018) A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol 255, 9298.CrossRefGoogle ScholarPubMed
Missailidis, C, Hällqvist, J, Qureshi, AR, et al. (2016) Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLOS ONE 11, e0141738.CrossRefGoogle ScholarPubMed
Shan, Z, Sun, T, Huang, H, et al. (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr 106, 888894.Google ScholarPubMed
Miao, J, Ling, AV, Manthena, PV, et al. (2015) Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6, 6498.CrossRefGoogle ScholarPubMed
Schugar, RC, Shih, DM, Warrier, M, et al. (2017) The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 19, 24512461.CrossRefGoogle ScholarPubMed
Ronco, C, Haapio, M, House, AA, et al. (2008) Cardiorenal syndrome. J Am Coll Cardiol 52, 15271539.CrossRefGoogle ScholarPubMed
Huc, T, Drapala, A, Gawrys, M, et al. (2018) Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am J Physiol Heart Circ Physiol 315, H1805H1820.CrossRefGoogle ScholarPubMed
Wang, Z, Levison, BS, Hazen, JE, et al. (2014) Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem 455, 3540.CrossRefGoogle ScholarPubMed
Tang, WH, Wang, Z, Shrestha, K, et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21, 9196.CrossRefGoogle ScholarPubMed
Krüger, R, Merz, B, Rist, MJ, et al. (2017) Associations of current diet with plasma and urine TMAO in the KarMeN Study: direct and indirect contributions. Mol Nutr Food Res 61, 1700363.CrossRefGoogle ScholarPubMed
Cho, CE, Taesuwan, S, Malysheva, OV, et al. (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 61, 1600324.CrossRefGoogle ScholarPubMed
DiMarco, DM, Missimer, A, Murillo, AG, et al. (2017) Intake of up to 3 eggs/day increases HDL cholesterol and plasma choline while plasma trimethylamine-N-oxide is unchanged in a healthy population. Lipids 52, 255263.CrossRefGoogle Scholar
Dambrova, M, Latkovskis, G, Kuka, J, et al. (2016) Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes 124, 251256.Google ScholarPubMed
Meyer, KA, Benton, TZ, Bennett, BJ, et al. (2016) Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). J Am Heart Assoc 5, e003970.CrossRefGoogle Scholar
Obeid, R, Awwad, HM, Rabagny, Y, et al. (2016) Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am J Clin Nutr 103, 703711.CrossRefGoogle ScholarPubMed
Fu, BC, Hullar, MAJ, Randolph, TW, et al. (2020) Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr 111, 12261234.CrossRefGoogle ScholarPubMed
Xu, K-Y, Xia, G-H, Lu, J-Q, et al. (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7, 1445.CrossRefGoogle ScholarPubMed
Chistiakov, DA, Bobryshev, YV, Kozarov, E, et al. (2015) Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Front Microbiol 6, 671.CrossRefGoogle ScholarPubMed
Brown, JM & Hazen, SL (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25, 4853.CrossRefGoogle ScholarPubMed
Tang, WH, Wang, Z, Fan, Y, et al. (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64, 19081914.CrossRefGoogle ScholarPubMed
Schiattarella, GG, Sannino, A, Toscano, E, et al. (2017) Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose–response meta-analysis. Eur Heart J 38, 29482956.CrossRefGoogle ScholarPubMed
Roe, AJ, Zhang, S, Bhadelia, RA, et al. (2017) Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am J Clin Nutr 105, 12831290.Google ScholarPubMed
Mueller, DM, Allenspach, M, Othman, A, et al. (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243, 638644.CrossRefGoogle ScholarPubMed
Lever, M, George, PM, Slow, S, et al. (2014) Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLOS ONE 9, e114969.CrossRefGoogle ScholarPubMed
Tang, WH, Wang, Z, Kennedy, DJ, et al. (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116, 448455.CrossRefGoogle ScholarPubMed
Jia, J, Dou, P, Gao, M, et al. (2019) Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional mendelian randomization analysis. Diabetes 68, 17471755.CrossRefGoogle ScholarPubMed
Barrea, L, Annunziata, G, Muscogiuri, G, et al. (2018) Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 10, 1971.CrossRefGoogle ScholarPubMed
Wang, Z, Bergeron, N, Levison, BS, et al. (2019) Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 40, 583594.CrossRefGoogle ScholarPubMed
Teft, WA, Morse, BL, Leake, BF, et al. (2017) Identification and characterization of trimethylamine-N-oxide uptake and efflux transporters. Mol Pharm 14, 310318.CrossRefGoogle ScholarPubMed
Li, X, Chen, Y, Liu, J, et al. (2012) Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in Macaca mulatta . Exp Biol Med (Maywood) 237, 13101321.CrossRefGoogle ScholarPubMed
Millard, HR, Musani, SK, Dibaba, DT, et al. (2018) Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur J Nutr 57, 5160.CrossRefGoogle ScholarPubMed
Haring, B, Gronroos, N, Nettleton, JA, et al. (2014) Dietary protein intake and coronary heart disease in a large community based cohort: results from the Atherosclerosis Risk in Communities (ARIC) study. PLOS ONE 9, e109552.CrossRefGoogle Scholar
Abete, I, Romaguera, D, Vieira, AR, et al. (2014) Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr 112, 762775.CrossRefGoogle ScholarPubMed
Wang, X, Lin, X, Ouyang, YY, et al. (2016) Red and processed meat consumption and mortality: dose–response meta-analysis of prospective cohort studies. Public Health Nutr 19, 893905.CrossRefGoogle ScholarPubMed
Rohrmann, S, Linseisen, J, Allenspach, M, et al. (2016) Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr 146, 283289.CrossRefGoogle Scholar
Koeth, RA, Levison, BS, Culley, MK, et al. (2014) γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20, 799812.CrossRefGoogle ScholarPubMed
Stremmel, W, Schmidt, KV, Schuhmann, V, et al. (2017) Blood trimethylamine-N-oxide originates from microbiota mediated breakdown of phosphatidylcholine and absorption from small intestine. PLOS ONE 12, e0170742.CrossRefGoogle ScholarPubMed
Lang, DH, Yeung, CK, Peter, RM, et al. (1998) Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem Pharmacol 56, 10051012.CrossRefGoogle ScholarPubMed
Dolphin, CT, Janmohamed, A, Smith, RL, et al. (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17, 491494.CrossRefGoogle ScholarPubMed
Fennema, D, Phillips, IR & Shephard, EA (2016) Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44, 18391850.CrossRefGoogle ScholarPubMed
Wiedeman, AM, Barr, SI, Green, TJ, et al. (2018) Dietary choline intake: current state of knowledge across the life cycle. Nutrients 10, 1513.CrossRefGoogle ScholarPubMed
West, AA, Shih, Y, Wang, W, et al. (2014) Egg n-3 fatty acid composition modulates biomarkers of choline metabolism in free-living lacto-ovo-vegetarian women of reproductive age. J Acad Nutr Diet 114, 15941600.CrossRefGoogle ScholarPubMed
Ufnal, M, Zadlo, A & Ostaszewski, R (2015) TMAO: a small molecule of great expectations. Nutrition 31, 13171323.CrossRefGoogle ScholarPubMed
Sheard, NF & Zeisel, SH (1986) An in vitro study of choline uptake by intestine from neonatal and adult rats. Pediatr Res 20, 768772.CrossRefGoogle Scholar
Sanford, PA & Smyth, DH (1971) Intestinal transfer of choline in rat and hamster. J Physiol 215, 769788.CrossRefGoogle ScholarPubMed
Zeisel, SH, DaCosta, KA & Fox, JG (1985) Endogenous formation of dimethylamine. Biochem J 232, 403408.CrossRefGoogle ScholarPubMed
Miller, CA, Corbin, KD, da Costa, KA, et al. (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose–response study. Am J Clin Nutr 100, 778786.CrossRefGoogle ScholarPubMed
Chung, RWS, Wang, Z, Bursill, CA, et al. (2017) Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice. PLOS ONE 12, e0189523.CrossRefGoogle ScholarPubMed
Zhu, W, Wang, Z, Tang, WHW, et al. (2017) Gut microbe-generated TMAO from dietary choline is prothrombotic in subjects. Circulation 135, 16711673.CrossRefGoogle ScholarPubMed
Meyer, KA & Shea, JW (2017) Dietary choline and betaine and risk of CVD: a systematic review and meta-analysis of prospective studies. Nutrients 9, 711.CrossRefGoogle ScholarPubMed
Nagata, C, Wada, K, Tamura, T, et al. (2015) Choline and betaine intakes are not associated with cardiovascular disease mortality risk in Japanese men and women. J Nutr 145, 17871792.CrossRefGoogle Scholar
Rebouche, CJ & Seim, H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 18, 3961.CrossRefGoogle ScholarPubMed
Meadows, JA & Wargo, MJ (2015) Carnitine in bacterial physiology and metabolism. Microbiology 161, 11611174.CrossRefGoogle ScholarPubMed
Hoppel, C (2003) The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 41, Suppl. 4, S4S12.CrossRefGoogle ScholarPubMed
Harper, P, Elwin, CE & Cederblad, G (1988) Pharmacokinetics of intravenous and oral bolus doses of l-carnitine in healthy subjects. Eur J Clin Pharmacol 35, 555562.CrossRefGoogle ScholarPubMed
Bain, MA, Milne, RW & Evans, AM (2006) Disposition and metabolite kinetics of oral L-carnitine in humans. J Clin Pharmacol 46, 11631170.CrossRefGoogle ScholarPubMed
Vallance, HD, Koochin, A, Branov, J, et al. (2018) Marked elevation in plasma trimethylamine-N-oxide (TMAO) in patients with mitochondrial disorders treated with oral l-carnitine. Mol Genet Metab Rep 15, 130133.CrossRefGoogle ScholarPubMed
Ussher, JR, Lopaschuk, GD & Arduini, A (2013) Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis 231, 456461.CrossRefGoogle ScholarPubMed
Bene, J, Hadzsiev, K & Melegh, B (2018) Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 8, 8.CrossRefGoogle ScholarPubMed
Noland, RC, Koves, TR, Seiler, SE, et al. (2009) Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 284, 2284022852.CrossRefGoogle ScholarPubMed
DiNicolantonio, JJ, Lavie, CJ, Fares, H, et al. (2013) l-Carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc 88, 544551.CrossRefGoogle ScholarPubMed
Craig, SA (2004) Betaine in human nutrition. Am J Clin Nutr 80, 539549.CrossRefGoogle ScholarPubMed
Hoffmann, L, Brauers, G, Gehrmann, T, et al. (2013) Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol 304, G835G846.CrossRefGoogle ScholarPubMed
Zeisel, SH, Mar, MH, Howe, JC, et al. (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133, 13021307.CrossRefGoogle ScholarPubMed
Weinhold, PA & Sanders, R (1973) The oxidation of choline by liver slices and mitochondria during liver development in the rat. Life Sci 13, 621629.CrossRefGoogle Scholar
Andresen, PA, Kaasen, I, Styrvold, OB, et al. (1988) Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline–glycine betaine pathway of Escherichia coli . J Gen Microbiol 134, 17371746.Google ScholarPubMed
Naumann, E, Hippe, H & Gottschalk, G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and l-alanine by a Clostridium sporogenes–Methanosarcina barkeri coculture. Appl Environ Microbiol 45, 474483.CrossRefGoogle ScholarPubMed
Wood, AP, Warren, FJ & Kelly, DP (2010) Methylotrophic bacteria in trimethylaminuria. In Handbook of Hydrocarbon and Lipid Microbiology, pp. 32273240 [Timmis, KN, editor]. Berlin and Heidelberg: Springer.CrossRefGoogle Scholar
Zawieja, EE, Zawieja, B & Chmurzynska, A (2019) Betaine supplementation moderately increases total cholesterol levels: a systematic review and meta-analysis. J Diet Suppl 6, 113.Google Scholar
Guasch-Ferre, M, Hu, FB, Ruiz-Canela, M, et al. (2017) Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J Am Heart Assoc 6, e006524.CrossRefGoogle ScholarPubMed
Garcia, E, Osté, MCJ, Bennett, DW, et al. (2019) High betaine, a trimethylamine N-oxide related metabolite, is prospectively associated with low future risk of type 2 diabetes mellitus in the PREVEND study. J Clin Med 8, 1813.CrossRefGoogle ScholarPubMed
Muramatsu, H, Matsuo, H, Okada, N, et al. (2013) Characterization of ergothionase from Burkholderia sp. HME13 and its application to enzymatic quantification of ergothioneine. Appl Microbiol Biotechnol 97, 53895400.CrossRefGoogle ScholarPubMed
Cheah, IK & Halliwell, B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 1822, 784793.CrossRefGoogle Scholar
Melville, DB, Horner, WH & Lubschez, R (1954) Tissue ergothioneine. J Biol Chem 206, 221228.CrossRefGoogle ScholarPubMed
Ey, J, Schömig, E & Taubert, D (2007) Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem 55, 64666474.CrossRefGoogle ScholarPubMed
Nakamura, T, Sugiura, S, Kobayashi, D, et al. (2007) Decreased proliferation and erythroid differentiation of K562 cells by siRNA-induced depression of OCTN1 (SLC22A4) transporter gene. Pharm Res 24, 16281635.CrossRefGoogle ScholarPubMed
Halliwell, B, Cheah, IK & Tang, RMY (2018) Ergothioneine – a diet-derived antioxidant with therapeutic potential. FEBS Lett 592, 33573366.CrossRefGoogle ScholarPubMed
Lee, DH, Yang, M, Giovannucci, EL, et al. (2019) Mushroom consumption, biomarkers, and risk of cardiovascular disease and type 2 diabetes: a prospective cohort study of US women and men. Am J Clin Nutr 110, 666674.CrossRefGoogle ScholarPubMed
Papandreou, C, Becerra-Tomás, N, Bulló, M, et al. (2019) Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin Nutr 38, 348356.CrossRefGoogle ScholarPubMed
Becerra-Tomás, N, Díaz-López, A, Rosique-Esteban, N, et al. (2018) Legume consumption is inversely associated with type 2 diabetes incidence in adults: a prospective assessment from the PREDIMED study. Clin Nutr 37, 906913.CrossRefGoogle ScholarPubMed
Zhang, AQ, Mitchell, SC & Smith, RL (1999) Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37, 515520.CrossRefGoogle ScholarPubMed
Landfald, B, Valeur, J, Berstad, A, et al. (2017) Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microb Ecol Health Dis 28, 1327309.Google ScholarPubMed
Withers, PC, Morrison, G & Guppy, M (1994) Buoyancy role of urea and TMAO in an elasmobranch fish, the Port Jackson shark, Heterodontus portusjacksoni . Physiol Zool 67, 693705.CrossRefGoogle Scholar
Lenz, EM, Bright, J, Wilson, ID, et al. (2004) Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal 36, 841849.CrossRefGoogle ScholarPubMed
Dumas, ME, Maibaum, EC, Teague, C, et al. (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem 78, 21992208.CrossRefGoogle ScholarPubMed
Schmedes, M, Brejnrod, AD, Aadland, EK, et al. (2019) The effect of lean-seafood and non-seafood diets on fecal metabolites and gut microbiome: results from a randomized crossover intervention study. Mol Nutr Food Res 63, e1700976.CrossRefGoogle ScholarPubMed
Falls, JG, Ryu, DY, Cao, Y, et al. (1997) Regulation of mouse liver flavin-containing monooxygenases 1 and 3 by sex steroids. Arch Biochem Biophys 342, 212223.CrossRefGoogle ScholarPubMed
Esposito, T, Varriale, B, D’Angelo, R, et al. (2014) Regulation of flavin-containing mono-oxygenase (Fmo3) gene expression by steroids in mice and humans. Horm Mol Biol Clin Investig 20, 99109.Google ScholarPubMed
Cashman, JR, Xiong, Y, Lin, J, et al. (1999) In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem Pharmacol 58, 10471055.CrossRefGoogle ScholarPubMed
Astafev, AA, Patel, SA & Kondratov, RV (2017) Calorie restriction effects on circadian rhythms in gene expression are sex dependent. Sci Rep 7, 9716.CrossRefGoogle ScholarPubMed
Guo, D, Shen, Y, Li, W, et al. (2020) Upregulation of flavin-containing monooxygenase 3 mimics calorie restriction to retard liver aging by inducing autophagy. Aging (Albany NY) 12, 931944.CrossRefGoogle ScholarPubMed
Tanino, T, Bando, T, Komada, A, et al. (2017) Hepatic flavin-containing monooxygenase 3 enzyme suppressed by type 1 allergy-produced nitric acid. Drug Metab Dispos 45, 11891196.CrossRefGoogle Scholar
Klick, DE, Shadley, JD & Hines, RN (2008) Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein β (C/EBPβ) liver inhibitory and liver activating proteins. Biochem Pharmacol 76, 268278.CrossRefGoogle ScholarPubMed
Koukouritaki, SB, Simpson, P, Yeung, CK, et al. (2002) Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 51, 236243.CrossRefGoogle Scholar
Xu, M, Bhatt, DK, Yeung, CK, et al. (2017) Genetic and nongenetic factors associated with protein abundance of flavin-containing monooxygenase 3 in human liver. J Pharmacol Exp Ther 363, 265274.CrossRefGoogle ScholarPubMed
Fu, ZD, Csanaky, IL & Klaassen, CD (2012) Effects of aging on mRNA profiles for drug-metabolizing enzymes and transporters in livers of male and female mice. Drug Metab Dispos 40, 12161225.CrossRefGoogle ScholarPubMed
Shimizu, M, Cashman, JR & Yamazaki, H (2007) Transient trimethylaminuria related to menstruation. BMC Med Genet 8, 2.CrossRefGoogle ScholarPubMed
Hukkanen, J, Dempsey, D, Jacob, P III, et al. (2005) Effect of pregnancy on a measure of FMO3 activity. Br J Clin Pharmacol 60, 224226.CrossRefGoogle ScholarPubMed
Johnson, C, Prokopienko, AJ, West, RE III, et al. (2018) Decreased kidney function is associated with enhanced hepatic flavin monooxygenase activity and increased circulating trimethylamine N-oxide concentrations in mice. Drug Metab Dispos 46, 13041309.CrossRefGoogle ScholarPubMed
Zhang, J, Chaluvadi, MR, Reddy, R, et al. (2009) Hepatic flavin-containing monooxygenase gene regulation in different mouse inflammation models. Drug Metab Dispos 37, 462468.CrossRefGoogle ScholarPubMed
Petriello, MC, Hoffman, JB, Sunkara, M, et al. (2016) Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors. J Nutr Biochem 33, 145153.CrossRefGoogle ScholarPubMed
Liao, BM, McManus, SA, Hughes, WE, et al. (2016) Flavin-containing monooxygenase 3 reduces endoplasmic reticulum stress in lipid-treated hepatocytes. Mol Endocrinol 30, 417428.CrossRefGoogle ScholarPubMed
Xu, J, Zhang, J, Cai, S, et al. (2009) Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy. Anal Bioanal Chem 393, 16571668.CrossRefGoogle ScholarPubMed
Barton, S, Navarro, SL, Buas, MF, et al. (2015) Targeted plasma metabolome response to variations in dietary glycemic load in a randomized, controlled, crossover feeding trial in healthy adults. Food Funct 6, 29492956.CrossRefGoogle Scholar
Augustin, LS, Franceschi, S, Jenkins, DJ, et al. (2002) Glycemic index in chronic disease: a review. Eur J Clin Nutr 56, 10491071.CrossRefGoogle ScholarPubMed
Huo, T, Cai, S, Lu, X, et al. (2009) Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J Pharm Biomed Anal 49, 976982.CrossRefGoogle ScholarPubMed
Warrier, M, Shih, DM, Burrows, AC, et al. (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10, 326338.CrossRefGoogle ScholarPubMed
Shih, DM, Wang, Z, Lee, R, et al. (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56, 2237.CrossRefGoogle ScholarPubMed
Kusuhara, H & Sugiyama, Y (2007) ATP-binding cassette, subfamily G (ABCG family). Pflugers Arch 453, 735744.CrossRefGoogle Scholar
Horsey, A, Cox, M, Sarwat, S, et al. (2016) The multidrug transporter ABCG2, still more questions than answers. Biochem Soc Trans 44, 824830.CrossRefGoogle ScholarPubMed
Al-Waiz, M, Mitchell, SC, Idle, JR, et al. (1987) The metabolism of 14C-labelled trimethylamine and its N-oxide in man. Xenobiotica 17, 551558.CrossRefGoogle Scholar
Bell, JD, Lee, JA, Lee, HA, et al. (1991) Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide. Biochim Biophys Acta 1096, 101107.CrossRefGoogle ScholarPubMed
Doucet, C, Dutheil, D, Petit, I, et al. (2004) Influence of colloid, preservation medium and trimetazidine on renal medulla injury. Biochim Biophys Acta 1673, 105114.CrossRefGoogle ScholarPubMed
Kaysen, GA, Johansen, KL, Chertow, GM, et al. (2015) Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 25, 351356.CrossRefGoogle Scholar
Xu, R, Wang, Q & Li, L (2015) A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics 16, Suppl. 7, S4.CrossRefGoogle Scholar
Hartiala, J, Bennett, BJ, Tang, WH, et al. (2014) Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and l-carnitine. Arterioscler Thromb Vasc Biol 34, 13071313.CrossRefGoogle ScholarPubMed
al-Waiz, M, Mikov, M, Mitchell, SC, et al. (1992) The exogenous origin of trimethylamine in the mouse. Metabolism 41, 135136.CrossRefGoogle ScholarPubMed
Ferguson, JF (2013) Meat-loving microbes: do steak-eating bacteria promote atherosclerosis? Circ Cardiovasc Genet 6, 308309.CrossRefGoogle ScholarPubMed
Wang, Z, Tang, WH, Buffa, JA, et al. (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35, 904910.CrossRefGoogle ScholarPubMed
Ross, AB, Zangger, A & Guiraud, SP (2014) Cereal foods are the major source of betaine in the Western diet – analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chem 145, 859865.CrossRefGoogle ScholarPubMed
Matijasic, BB, Obermajer, T, Lipoglavsek, L, et al. (2014) Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 53, 10511064.CrossRefGoogle ScholarPubMed
Kabeerdoss, J, Devi, RS, Mary, RR, et al. (2012) Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr 108, 953957.CrossRefGoogle Scholar
Tomova, A, Bukovsky, I, Rembert, E, et al. (2019) The effects of vegetarian and vegan diets on gut microbiota. Front Nutr 6, 47.CrossRefGoogle ScholarPubMed
Smits, LP, Kootte, RS, Levin, E, et al. (2018) Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc 7, e008342.CrossRefGoogle ScholarPubMed
Chao, CK & Zeisel, SH (1990) Formation of trimethylamine from dietary choline by Streptococcus sanguis I, which colonizes the mouth. J Nutr Biochem 1, 8997.CrossRefGoogle ScholarPubMed
Craciun, S & Balskus, EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A 109, 2130721312.CrossRefGoogle ScholarPubMed
Zhu, Y, Jameson, E, Crosatti, M, et al. (2014) Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 111, 42684273.CrossRefGoogle ScholarPubMed
Martinez-del Campo, A, Bodea, S, Hamer, HA, et al. (2015) Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. MBio 6, e00042-15.CrossRefGoogle ScholarPubMed
Falony, G, Vieira-Silva, S & Raes, J (2015) Microbiology meets big data: the case of gut microbiota-derived trimethylamine. Annu Rev Microbiol 69, 305321.CrossRefGoogle ScholarPubMed
Wu, GD, Chen, J, Hoffmann, C, et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105108.CrossRefGoogle ScholarPubMed
Ruengsomwong, S, Korenori, Y, Sakamoto, N, et al. (2014) Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. J Microbiol Biotechnol 24, 10261033.CrossRefGoogle ScholarPubMed
Obeid, R, Awwad, HM, Keller, M, et al. (2017) Trimethylamine-N-oxide and its biological variations in vegetarians. Eur J Nutr 56, 25992609.CrossRefGoogle ScholarPubMed
Troseid, M, Ueland, T, Hov, JR, et al. (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277, 717726.CrossRefGoogle ScholarPubMed
Lomeli, N, Bota, DA & Davies, KJA (2017) Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond) 131, 25732599.CrossRefGoogle ScholarPubMed
Brown, JM & Hazen, SL (2015) The gut microbial endocrine organ: bacterially-derived signals driving cardiometabolic diseases. Annu Rev Med 66, 343359.CrossRefGoogle ScholarPubMed
Imhann, F, Bonder, MJ, Vich Vila, A, et al. (2016) Proton pump inhibitors affect the gut microbiome. Gut 65, 740748.CrossRefGoogle ScholarPubMed
Rogers, MAM & Aronoff, DM (2016) The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect 22, 178.e1178.e9.CrossRefGoogle ScholarPubMed
Maier, L, Pruteanu, M, Kuhn, M, et al. (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623628.CrossRefGoogle ScholarPubMed
Tripolt, NJ, Leber, B, Triebl, A, et al. (2015) Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study. Atherosclerosis 242, 141144.CrossRefGoogle ScholarPubMed
Borges, NA, Stenvinkel, P, Bergman, P, et al. (2019) Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study. Probiotics Antimicrob Proteins 11, 648654.CrossRefGoogle ScholarPubMed
Khalesi, S, Sun, J, Buys, N, et al. (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64, 897903.CrossRefGoogle ScholarPubMed
Shimizu, M, Hashiguchi, M, Shiga, T, et al. (2015) Meta-analysis: Effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLOS ONE 10, e0139795.CrossRefGoogle ScholarPubMed
Khalesi, S, Bellissimo, N, Vandelanotte, C, et al. (2019) A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr 73, 2437.CrossRefGoogle ScholarPubMed
David, LA, Maurice, CF, Carmody, RN, et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563.CrossRefGoogle ScholarPubMed
Mitchell, SC & Smith, RL (2001) Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos 29, 517521.Google ScholarPubMed
Griffin, LE, Djuric, Z, Angiletta, CJ, et al. (2019) A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct 10, 21382147.CrossRefGoogle Scholar
Ghonimy, A, Zhang, DM, Farouk, MH, et al. (2018) The impact of carnitine on dietary fiber and gut bacteria metabolism and their mutual interaction in monogastrics. Int J Mol Sci 19, 1008.CrossRefGoogle ScholarPubMed
Zabell, A & Tang, WHW (2017) Targeting the microbiome in heart failure. Curr Treat Options Cardiovasc Med 19, 27.CrossRefGoogle ScholarPubMed
Jiang, XC, Paultre, F, Pearson, TA, et al. (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 20, 26142618.CrossRefGoogle ScholarPubMed
Li, Z, Fan, Y, Liu, J, et al. (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32, 15771584.CrossRefGoogle ScholarPubMed
Nelson, JC, Jiang, XC, Tabas, I, et al. (2006) Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol 163, 903912.CrossRefGoogle ScholarPubMed
Wang, F, Zheng, J, Yang, B, et al. (2015) Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 4, e002408.CrossRefGoogle ScholarPubMed
Massera, D, Graf, L, Barba, S, et al. (2016) Angina rapidly improved with a plant-based diet and returned after resuming a Western diet. J Geriatr Cardiol 13, 364366.Google ScholarPubMed
Wang, X, Ouyang, Y, Liu, J, et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose–response meta-analysis of prospective cohort studies. BMJ 349, g4490.CrossRefGoogle ScholarPubMed
Bazzano, LA, He, J, Ogden, LG, et al. (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 76, 9399.CrossRefGoogle ScholarPubMed
Glick-Bauer, M & Yeh, MC (2014) The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 6, 48224838.CrossRefGoogle ScholarPubMed
Esselstyn, CB Jr (2001) Resolving the coronary artery disease epidemic through plant-based nutrition. Prev Cardiol 4, 171177.CrossRefGoogle ScholarPubMed
Nagura, J, Iso, H, Watanabe, Y, et al. (2009) Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Br J Nutr 102, 285292.CrossRefGoogle ScholarPubMed
Strandhagen, E, Hansson, PO, Bosaeus, I, et al. (2000) High fruit intake may reduce mortality among middle-aged and elderly men. The Study of Men Born in 1913. Eur J Clin Nutr 54, 337341.CrossRefGoogle Scholar
He, FJ, Nowson, CA & MacGregor, GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367, 320326.CrossRefGoogle ScholarPubMed
Streppel, MT, Ocke, MC, Boshuizen, HC, et al. (2008) Long-term fish consumption and n-3 fatty acid intake in relation to (sudden) coronary heart disease death: the Zutphen Study. Eur Heart J 29, 20242030.CrossRefGoogle ScholarPubMed
Odermatt, A (2011) The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease. Am J Physiol Renal Physiol 301, F919F931.CrossRefGoogle Scholar
van den Berg, E, Hospers, FA, Navis, G, et al. (2011) Dietary acid load and rapid progression to end-stage renal disease of diabetic nephropathy in Westernized South Asian people. J Nephrol 24, 1117.CrossRefGoogle ScholarPubMed
Rohrmann, S & Linseisen, J (2016) Processed meat: the real villain? Proc Nutr Soc 75, 233241.CrossRefGoogle Scholar
Chen, X, Wei, G, Jalili, T, et al. (2016) The associations of plant protein intake with all-cause mortality in CKD. Am J Kidney Dis 67, 423430.CrossRefGoogle ScholarPubMed
Li, SS, Blanco Mejia, S, Lytvyn, L, et al. (2017) Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 6, e006659.CrossRefGoogle ScholarPubMed
Richter, CK, Skulas-Ray, AC, Champagne, CM, et al. (2015) Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Adv Nutr 6, 712728.CrossRefGoogle ScholarPubMed
Berryman, CE, Agarwal, S, Lieberman, HR, et al. (2016) Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults. Am J Clin Nutr 104, 743749.CrossRefGoogle Scholar
Mehrabani, S, Asemi, M, Najafian, J, et al. (2017) Association of animal and plant proteins intake with hypertension in Iranian adult population: Isfahan Healthy Heart Program. Adv Biomed Res 6, 112.Google ScholarPubMed
Song, M, Fung, TT, Hu, FB, et al. (2016) Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med 176, 14531463.CrossRefGoogle ScholarPubMed
Yazdekhasti, N, Brandsch, C, Schmidt, N, et al. (2016) Fish protein increases circulating levels of trimethylamine-N-oxide and accelerates aortic lesion formation in apoE null mice. Mol Nutr Food Res 60, 358368.CrossRefGoogle ScholarPubMed
Bain, MA, Fornasini, G & Evans, AM (2005) Trimethylamine: metabolic, pharmacokinetic and safety aspects. Curr Drug Metab 6, 227240.CrossRefGoogle ScholarPubMed
Annunziata, G, Maisto, M, Schisano, C, et al. (2019) Effects of grape pomace polyphenolic extract (Taurisolo®) in reducing TMAO serum levels in humans: preliminary results from a randomized, placebo-controlled, cross-over study. Nutrients 11, 139.CrossRefGoogle ScholarPubMed
Annunziata, G, Maisto, M, Schisano, C, et al. (2019) Effect of grape pomace polyphenols with or without pectin on TMAO serum levels assessed by LC/MS-based assay: a preliminary clinical study on overweight/obese subjects. Front Pharmacol 10, 575.CrossRefGoogle ScholarPubMed
Busby, MG, Fischer, L, da Costa, KA, et al. (2004) Choline- and betaine-defined diets for use in clinical research and for the management of trimethylaminuria. J Am Diet Assoc 104, 18361845.CrossRefGoogle ScholarPubMed
Gruppen, EG, Garcia, E, Connelly, MA, et al. (2017) TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep 7, 13781.CrossRefGoogle ScholarPubMed
Al-Obaide, MAI, Singh, R, Datta, P, et al. (2017) Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med 6, 86.CrossRefGoogle ScholarPubMed
Boutagy, NE, Neilson, AP, Osterberg, KL, et al. (2015) Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res 35, 858864.CrossRefGoogle ScholarPubMed