Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T16:28:31.146Z Has data issue: false hasContentIssue false

Valley downcutting in the Ardennes (W Europe): Interplay between tectonically triggered regressive erosion and climatic cyclicity

Published online by Cambridge University Press:  24 March 2014

A. Demoulin*
Affiliation:
Department of Physical Geography and Quaternary, University of Liège, Sart Tilman, B11, 4000 Liège, Belgium Fund for Scientific Research – FNRS, Brussels, Belgium
A. Becker
Affiliation:
Department of Physical Geography and Quaternary, University of Liège, Sart Tilman, B11, 4000 Liège, Belgium
G. Rixhon
Affiliation:
Institute for Geography, University of Cologne, Germany
R. Braucher
Affiliation:
CEREGE, University Aix-Marseille III, France
D. Bourlès
Affiliation:
CEREGE, University Aix-Marseille III, France
L. Siame
Affiliation:
CEREGE, University Aix-Marseille III, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While climatic models of valley downcutting discuss the origin of terrace staircases in valleys of middle Europe within the frame of alternating cold and temperate periods of the Quaternary, other models, starting from a base level fall imposed by an initial tectonic signal, describe the response of the drainage network mainly as the propagation of an erosion wave from the place of base level fall (the margin of the uplifted region) toward the headwaters, the two types of model being rarely confronted. In the Ardennes (West Europe), cosmogenic 10Be and 26Al ages have recently been calculated for the abandonment of the Younger Main Terrace (YMT) level, a prominent feature at mid-height of the valleysides marking the starting point of the mid-Pleistocene phase of deep river incision in the massif. These ages show that the terrace has been abandoned diachronically as the result of a migrating erosion wave that started at 0.73 Ma in the Meuse catchment just north of the massif, soon entered the latter, and is still visible in the current long profiles of the Ardennian Ourthe tributaries as knickpoints disturbing their upper reaches. At first glance, these new findings are incompatible with the common belief that the terraces of the Ardennian rivers were generated by a climatically triggered stepwise general incision of the river profiles. However, several details of the terrace staircases (larger than average vertical spacing between the YMT and the next younger terrace, varying number of post-YMT terraces in trunk stream, tributaries and subtributaries) show that a combination of the climatic and tectonic models of river incision is able to satisfactorily account for all available data. The cosmogenic ages of the YMT also point out a particular behaviour of the migrating knickpoints, which apparently propagated on average more slowly in the main rivers than in the tributaries, in contradiction with the relation that makes knickpoint celerity depend directly on drainage area. We tentatively suggest a process accounting for such anomalies in migration rates.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Attal, M., Tucker, G., Whittaker, A., Cowie, P. & Roberts, G., 2008. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment. Journal of Geophysical Research 113F, F03013, doi: 10.1029/2007JF000893.CrossRefGoogle Scholar
Beckers, A., Bovy, B. & Demoulin, A., 2011. Knickpoint migration in a drainage network of the Ardennes, Western Europe: What happens at junctions?Earth Surface Processes and Landforms, submitted.Google Scholar
Berlin, M. & Anderson, R., 2007. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. Journal of Geophysical Research 112F, F03S06, doi: 10.1029/2006JF000553.CrossRefGoogle Scholar
Bishop, P., Hoey, T., Jansen, J. & Artza, I., 2005. Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms 30: 767778.CrossRefGoogle Scholar
Blum, M. & Törnqvist, T., 2000. Fluvial responses to climate and sea level change: a review and look forward. Sedimentology 47 (Suppl. 1): 248.CrossRefGoogle Scholar
Boenigk, W. & Frechen, M., 2006. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25: 550574.CrossRefGoogle Scholar
Bridgland, D., 2000. River terrace systems in north-west Europe: an archive of environmental change, uplift, and early human occupation. Quaternary Science Reviews 19: 12931303.CrossRefGoogle Scholar
Bridgland, D. & Westaway, R., 2008. Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon. Geomorphology 98: 285315.CrossRefGoogle Scholar
Brunnacker, K. & Boenigk, W., 1983. The Rhine valley between the Neuwied Basin and the lower Rhenish Embayment. In: Fuchs, K., Gehlen, K.v., Maelzer, H., Murawski, & H., , Semmel, A. (eds): Plateau Uplift – The Rhenish Shield – A Case History. Springer, Berlin: 6273.Google Scholar
Büdel, J., 1977. Klima-Geomorphologie. Gebrüder Bornträger, Berlin – Stuttgart, 304 p.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large palaeoearthquakes with surface faulting in the Roer graben (northwestern Europe). Geophysical Journal International 132: 347362.CrossRefGoogle Scholar
Cordier, S., Harmand, D., Frechen, M. & Beiner, M., 2006. Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris Basin and Rhenish Massif). Quaternary Science Reviews 25: 14601474.CrossRefGoogle Scholar
Cordier, S., Frechen, M. & Tsukamoto, S., 2010. Methodological aspects on luminescence dating of fluvial sands from the Moselle basin, Luxembourg. Geochronometria 35: 6774.CrossRefGoogle Scholar
Cornet, Y., 1995. L'encaissement des rivières ardennaises au cours du Quaternaire. In: Demoulin, A. (ed.): L'Ardenne. Essai de géographie physique, Dépt Géographie Physique, Université de Liège (Liège): 155177.Google Scholar
Crosby, B. & Whipple, K., 2006. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology 82: 1638.CrossRefGoogle Scholar
Crosby, B., Whipple, K., Gasparini, N. & Wobus, C., 2007. Formation of fluvial hanging valleys: Theory and simulation. Journal of Geophysical Research 112F, F03S10, doi: 10.1029/2006JF000566.CrossRefGoogle Scholar
Demoulin, A., 1995. Les surfaces d'érosion méso-cénozoïques en Ardenne-Eifel. Bulletin de la Société Géologique de France 166: 573585.CrossRefGoogle Scholar
Demoulin, A. & Hallot, E., 2009. Shape and amount of the Quaternary uplift of the western Rhenish shield and the Ardennes (western Europe). Tectonophysics 474: 696708.CrossRefGoogle Scholar
Demoulin, A., Hallot, E. & Rixhon, G., 2009. Amount and controls of the Quaternary denudation in the Ardennes massif (western Europe). Earth Surface Processes and Landforms 34: 14871496.CrossRefGoogle Scholar
Demoulin, A., Beckers, A. & Bovy, B., 2012. On different types of adjustment usable to calculate the parameters of the stream power law. Geomorphology 138: 203208.CrossRefGoogle Scholar
Ek, C., 1957. Les terrasses de l'Ourthe et de l'Amblève inférieures. Annales de la Société géologique de Belgique 80: 333353.Google Scholar
Felder, W., Bosch, P. & Bisschops, J., 1989. Geologische kaart van Zuid-Limburg en omgeving. Afzettingen van de Maas. Rijks Geologische Dienst, Heerlen, Nederland.Google Scholar
Garcia-Castellanos, D., Cloetingh, S. & Van Balen, R., 2000. Modelling the Middle Pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel? Global and Planetary Change 27: 3952.CrossRefGoogle Scholar
Gibbard, P. & Lewin, J., 2009. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 474: 4155.CrossRefGoogle Scholar
Hoffmann, R., 1996. Die quartäre Tektonik des südwestlichen Schiefergebirges begründet mit der Höhenlage der jüngeren Hauptterrasse der Mosel und ihrer Nebenflüsse. Bonner Geowissenschaftliche Schriften 19, 156 p.Google Scholar
Houtgast, R., Van Balen, R. & Kasse, C., 2005. Late Quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching and its potential relation to glacial unloading. Quaternary Science Reviews 24: 491510.CrossRefGoogle Scholar
Howard, A. & Kerby, G., 1983. Channel changes in badlands. Geological Society of America Bulletin 94: 739752.2.0.CO;2>CrossRefGoogle Scholar
Huxtable, J. & Aitken, M., 1985. Thermoluminescence dating results for the Paleolithic site Maastricht-Belvédère. Mededelingen Rijks Geologische Dienst 39: 4144.Google Scholar
Juvigné, E., 1979. L'encaissement des rivières ardennaises depuis le début de la dernière glaciation. Zeitschrift für Geomorphologie 23, 291300.Google Scholar
Juvigné, E. & Schumacker, R., 1985. Données nouvelles sur l'âge de la capture de la Warche à Bévercé. Bulletin de la Société géographique de Liège 21: 311.Google Scholar
Juvigné, E. & Renard, F., 1992. Les terrasses de la Meuse de Liège à Maastricht. Annales de la Société géologique de Belgique 115: 167186.Google Scholar
Lenaz, D., Marciano, R., Veres, D., Dietrich, S. & Sirocko, F., 2010. Mineralogy of the Dehner and Jungferweiher maar tephras (Eifel, Germany). Neues Jahrbuch Geologische Paläontologische Abhandlungen 257: 5567.CrossRefGoogle Scholar
Lewin, J. & Gibbard, P., 2010. Quaternary river terraces in England: Forms, sediments and processes. Geomorphology 120: 293311.CrossRefGoogle Scholar
Loget, N. & Van Den Driessche, J., 2009. Wave train model for knickpoint migration. Geomorphology 106: 376382.CrossRefGoogle Scholar
Losson, B. & Quinif, Y., 2001. La capture de la Moselle: nouvelles données chronologiques par datations U/Th sur spéléothèmes. Karstologia 37: 2940.CrossRefGoogle Scholar
Meyer, W. & Stets, J., 1998. Junge Tektonik im Rheinischen Schiefergebirge und ihre Quantifizierung. Zeitschrift der Deutschen geologischen Gesellschaft 149:359379.CrossRefGoogle Scholar
Meyer, W. & Stets, J., 2007. Quaternary uplift in the Eifel area. In: Ritter, J. & Christensen, U. (eds): Mantle plumes, A multidisciplinary approach, Springer: 369378.CrossRefGoogle Scholar
Negendank, J., 1978. Zur Känozoischen Geschichte von Eifel und Hunsrück. Sedimentpetrographische Untersuchungen im Moselbereich. Forschungen zur Deutscen. Landeskunde 211, 90 p.Google Scholar
Ouchi, S., 1985. Response of alluvial rivers to slow active tectonic movement. Geological Society of America Bulletin 96: 504515.2.0.CO;2>CrossRefGoogle Scholar
Penck, A. & Brückner, E., 1909. Die Alpen im Eiszeitalter. Tauchnitz, Leipzig, 3 vol., 1199 p.Google Scholar
Pissart, A., 1974. La Meuse en France et en Belgique. Formation du bassin hydrographique. Les terrasses et leurs enseignements. In: L'évolution quaternaire des bassins fluviaux de la Mer du Nord méridionale, Société Géologique de Belgique, Liège: 105131.Google Scholar
Pissart, A. & Juvigné, E., 1982. Un phénomène de capture près de Malmédy: la Warche s'écoulait autrefois par la vallée de l'Eau Rouge. Annales de la Société géologique de Belgique 105: 7386.Google Scholar
Pissart, A., Harmand, D. & Krook, L., 1997. L'évolution de la Meuse de Toul à Maastricht depuis le Miocène: corrélations chronologiques et traces des captures de la Meuse lorraine d'après les minéraux denses. Géographie physique et Quaternaire 51: 267284.CrossRefGoogle Scholar
Pouclet, A., Juvigné, E. & Pirson, S., 2008. The Rocourt Tephra, a widespread 90-74 ka stratigraphic marker in Belgium. Quaternary Research 70: 105120.CrossRefGoogle Scholar
Quinif, Y., 1999. Karst et évolution des rivières: le cas de l'Ardennes. Geodinamica Acta 12: 267277.Google Scholar
Ritter, J., Jordan, M., Christensen, U. & Achauer, U., 2001. A mantle plume below the Eifel volcanic fields, Germany, Earth and Planetary Science Letters 186: 714.Google Scholar
Rixhon, G. & Demoulin, A., 2010. Fluvial terraces of the Amblève: a marker of the Quaternary river incision in the NE Ardennes massif (Western Europe). Zeitschrift für Geomorphologie 54: 161180.CrossRefGoogle Scholar
Rixhon, G., Braucher, R., Bourlès, D., Siame, L., Bovy, B. & Demoulin, A., 2011. Quaternary river incision in NE Ardennes (Belgium) – Insights from 10Be/26Al dating of river terraces. Quaternary Geochronology, 6: 273284.CrossRefGoogle Scholar
Schmincke, H., 2007. The Quaternary Volcanic Fields of the East and West Eifel (Germany). In: Ritter, J. & Christensen, U. (eds): Mantle plumes, A multidisciplinary approach, Springer: 241322.CrossRefGoogle Scholar
Sklar, L. & Dietrich, W., 1998. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. In: Tinkler, K. & Wohl, E., (eds): Rivers over rock: Fluvial processes in bedrock channels, Geophysical Monographies Series, 107, AGU (Washington D.C.): 237260.CrossRefGoogle Scholar
Sklar, L. & Dietrich, W., 2004. A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Research 40, W06301, doi: 10.1029/2003WR002496.Google Scholar
Van Balen, R., Houtgast, R., Van der Wateren, F., Vandenberghe, J. & Bogaart, P., 2000. Sediment budget and tectonic evolution of the Meuse catchment in the Ardenness and the Roer Valley Rift System. Global and Planetary Change 27:113129.CrossRefGoogle Scholar
Van Balen, R., Busschers, F. & Tucker, G., 2010. Modeling the response of the Rhine-Meuse fluvial system to Late Pleistocene climate change. Geomorphology 114, 440452.Google Scholar
Van den Berg, M., 1996. Fluvial sequences of the Maas. A 10 Ma record of neotectonics and climate change at various time-scales. Landbouwuniversiteit Wageningen, 181 p.Google Scholar
Vandenberghe, J., 1993. Changing fluvial processes under changing periglacial conditions. Zeitschrift für Geomorphologie, Supplement Band 88: 1728.Google Scholar
Vandenberghe, J., 1995a. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.CrossRefGoogle Scholar
Vandenberghe, J., 1995b. The role of rivers in palaeoclimatic reconstruction. In: Frenzel, B., Vandenberghe, J., Kasse, C., Bohncke, S. & Glaser, B. (eds): European River Activity and Climatic Change during the Lateglacial and early Holocene. Paläoklimaforschung 14: 1119.Google Scholar
Vandenberghe, J., 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91: 1723.CrossRefGoogle Scholar
Vandenberghe, J., 2003. Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Reviews 22: 20532060.CrossRefGoogle Scholar
Vandenberghe, J., 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 98: 275284.CrossRefGoogle Scholar
Whipple, K. & Tucker, G., 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research 104B: 1766117674.CrossRefGoogle Scholar
Whipple, K. & Tucker, G., 2002. Implications of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research 107B, 2039, doi: 10.1029/2000JB000044.CrossRefGoogle Scholar
Wobus, C., Crosby, B. & Whipple, K., 2006. Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. Journal of Geophysical Research 111F, F02017, doi: 10.1029/2005JF000406.CrossRefGoogle Scholar
Whittaker, A., Attal, M., Cowie, P., Tucker, G. & Roberts, G., 2008. Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology 100: 506526.CrossRefGoogle Scholar
Ziegler, P. & Dèzes, P., 2007. Cenozoic uplift of Variscan massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change 58: 237269.CrossRefGoogle Scholar