Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T09:37:32.027Z Has data issue: false hasContentIssue false

Paleoseismic investigations along the Peel Boundary Fault: geological setting, site selection and trenching results

Published online by Cambridge University Press:  01 April 2016

M. van den Berg
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
K. Vanneste
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
B. Dost
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
A. Lokhorst
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
M. van Eijk
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
K. Verbeeck
Affiliation:
TNO-NITG, Department of Geo-Infrastructure P.O. Box 511, 8000 AM Zwolle, The Netherlands; e-mail:m.vandenberg@nitg.tno.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On the basis of a multidisciplinary approach we have unraveled the palaeo-earthquake history of a trenched section across the Peel Boundary Fault. The area shows at present one of the largest contrasts in relative motion on both sides of the fault on the basis of repeated levelling. The geological record for the last 25 thousand years, recovered in the trench, shows evidence of two heavy earthquakes (moment magnitude between 6.0 and 6.6), that occurred in a relatively short timespan around 15 thousands years ago. A third less severe event occurred somewhere in the mid Holocene. The time interval between the two large events is in the order of 1500 years, an interval comparable to that between the last volcanic explosions in the nearby Eifel area. Both records together seem to suggest a relation between large-scale faulting and volcanic activity in the nearby Eifel area, but this interpretation is based on one trench only and should be tested by opening more trenches in the zone that is assumed to be affected by these large events.

Type
Special section: Palaeosis ECGS/CEGS additional papers
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Ahorner, L., 1983. Historical seismicity and present-day microearthquake activity of the Rhenish massif, Central Europe In: Fuchs, K., et al. (eds): Plateau uplift. Springer Verlag, Berlin: 198–221.Google Scholar
Ahorner, L., 1994. Fault-plane solutions and source parameters of the 1992 Roermond, the Netherlands, mainshock and its stronger aftershocks from regional seismic data. Geologie en Mijnbouw 73: 199–214.Google Scholar
Berz, G., 1994. Asessment of the losses caused by the 1992 Roermond earthquake, The Netherlands. Geologie en Mijnbouw 73: 281.Google Scholar
Camelbeeck, T., Van Eck, T., Pelzing, R., Ahorner, L., Loohuis, J., Haak, H.W., Hoang-Trong, P. & Hollnack, D., 1994. The 1992 Roermond earthquake, the Netherlands, and its aftershocks. Geologie en Mijnbouw, 73: 181–197.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geoph. J. Int. 347–362.Google Scholar
Camelbeeck, T., Vanneste, K., Verbeek, K., Megraoui, M., Pelzing, R., Hinzen, K., Dost, B. & Van den Berg, M.W., 2000. Long term seismic activity in the Lower Rhine Embayment, HAN workshop proceedings: 35–38.Google Scholar
Caston, V.N.D., 1977. A new isopach map of the Quaternary of the North Sea, In: Quaternary sediments of the Central North Sea 1 and 2, rep. Inst. Geol. Sci 77/11: 1–8.Google Scholar
De Crook, Th., 1996. A seismic zoning map conforming to Eurocode 8, and practical earthquake parameter relations for the Netherlands. Geologie en Mijnbouw, 73: 11–18.Google Scholar
Demanet, D., Evers, L.G., Teerlynck, H., Dost, B. & Jongmans, D., 2001. Geophysical investigation across the Peel boundary fault (The Netherlands) for a paleoseismological study. Netherlands Journal of Geosciences/Geologie en Mijnbouw 80: 119–127.Google Scholar
Frechen, M. & van den Berg, M.W., this issue. The coversands and timing of Late Quaternary earthquake events along the Peel Boundary Fault in the Netherlands.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W. & Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer valley Graben. Geologie en Mijnbouw, 73, 2-4: 129–141.Google Scholar
Gruenthal, G. & Stromeyer, D., 1994. The recent crustal stress in Cenntral Europe senso lato and its quantitative modelling. Geologie en Mijnbouw 73: 173–180.Google Scholar
Kasse, C. 1999. Late Pleniglacial and Late Glacial aeclian phases in The Netherlands. In: Schirmer, W. (Ed.) Dunes and fossil soils. Geo Archeo Rhein.Google Scholar
Lorenz, G.K., Groenewoud, W., Schokking, F., Van den Berg, M.W., Wiersma, J., Brouwer, F.J.J. & Jelgersma, S., 1991. Interim-rapport over het onderzoek naar de bodembeweging in Nederland. Rijkswaterstaat, Delft/Rijswijk, Rijks Geol. Dienst, Haarlem, 75 pp.Google Scholar
McCalpin, J.P., 1996. Paleoseismology. Academie Press: 588 pp.Google Scholar
Meyer, W. and Stetts, 1996. Das Rheintal Zwischen Bingen und Bonn. Sammlung Geologischer Führer Bd. 89. Gebr. Born-traeger (Berlin, Stuttgart): 386 pp.Google Scholar
Miedema, R., 1983. Amount, characteristics and significance of clay illuviation features in Late Weichselian Meuse terraces- in: Bullock, P. & Murphy, C.P., (eds.): Soil micromorphology, Vol II: 519–530.Google Scholar
Miedema, R. & Jongmans, T., 2002. Soil formation in Late Glacial Meuse sediments related to the Peel Boundary Fault activity. Netherlands Journal of Geosciences/Geologie en Mijnbouw 81 : 71–82.Google Scholar
Stuiver, M., Grootes, P.M. & Braziunas, T.F. 1995. The GISP-2 -180 climate record of the past 16.500 years and the role of the sun, ocean, and volcanoes. Quaternary Res. 44: 314–354.Google Scholar
Van den Berg, M.W., Groenewoud, W., Lorenz, G.K., Lubbers, P.J., Brus, D.J. & Kroonenberg, S.B. 1994. Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw, 73: 157–168.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas; A 10 Ma record of neotectonics and climate change at various timescales. Thesis University Wageningen, the Netherlands, 181 pp.Google Scholar
Wells, D.L. & Coppersmith, K.J., 1994. Empirical relationships among magnitude, rupture length, rupture area and surface displacement. Bulletin of the Seismological Society of America 84: 974–1002.Google Scholar
Winstanley, A.M., 1993. A review of the Triassic play in the Roer Valley Graben, SE onshore Netherlands. In: Parker, J.R. (ed) Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference, The Geological Society, London: 595–607.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe, 2nd Ed. Shell Internationale Petroleum Mij., Geological Society Publishing House, Bath, 238 pp.Google Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouws, 73, 2-4:.99–127.Google Scholar
Zolitschka, B., 1998. Paleoklimatisch bedeutung laminierte Sedimenten: Holtzmaar [Eifel, Deutschland], Lake C-2[NW.Territories, Canada] und Lago Grande di Monticchio [Basicata, Italien]. Reihe: Relief, Boden, Paleoklima Bd. 13, (Gebr. Born-traeger) Berlin, Stuttgart.Google Scholar
Zijderveld, L., Stephenson, R., Cloetingh, S., Duin, E. & Van den Berg, M.W., 1992. Subsidence analysis and modelling of the Roer valley graben (SE Netherlands). Tectonophysics 208: 159–171.Google Scholar