Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-nd7s2 Total loading time: 0.288 Render date: 2021-05-11T18:49:43.166Z Has data issue: true Feature Flags: {}

Characterisation and evolution of the River Rhine system

Published online by Cambridge University Press:  01 April 2016

F. Preusser
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1–3, CH-3012 Bern, Switzerland. Email: preusser@geo.unibe.ch
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

The River Rhine and its tributaries represent one of the largest drainage systems in Europe. Its prominence among other fluvial systems is due to the location of its headwaters within the central Swiss Alps, which were repeatedly glaciated during the Quaternary, and the concurrence of major parts of the River Rhine course with the European Cenozoic Rift System. Sediments of the Rhine have thus recorded both changes in climate and tectonic activity as well as sea level change in the lower part of the river course.

The River Rhine is composed of different subdivisions characterised by distinct geographical and geological settings. Vorder-and Hinterrhein in the headwaters are inner-alpine rivers frequently influenced in their course by tectonic lines and the blockage of valley floors by the deposits of mass movements. The Alpenrhein is located in a main Alpine valley that drains into a large foreland basin, the Bodensee (Lake Constance). The Hochrhein flows out of the lake following the Jura Mountains in a western direction. All these areas display a series of geological features such as moraine ridges and outwash plains, which directly reflect Quaternary glaciations of the Alps. The Oberrhein (Upper Rhine) Valley, as a graben structure, is part of the rifting system that started to develop during the middle Tertiary. The northern end of the graben is represented by the triple junction of the Mainz Basin, which is mainly characterised by the remains of marine transgressions that occurred during the initial rifting phase. The Rhine continues following the western branch of the tectonic system by passing through the Rhenish Massif. Uplift in this so-called Mittelrhein (Middle Rhine) area is well documented by a flight of late Tertiary to Quaternary river terraces. This region is also characterised by young volcanic activity as found, for example, in the Eifel volcanic field. The Niederheinische Bucht (Lower Rhine Embayment), especially the Roer Valley Rift System, represents the northern continuation of the rifting system. This area is characterised by differential uplift in the southern and subsidence in the northern part of the basin, which continues into the Netherlands. Here, the main stream of the River Rhine is separated into different branches developing an active delta at the coast of the North Sea. When the North Sea Basin was covered by ice during the Elsterian, Saalian and probably also the Weichselian glaciation and global sea level was low, the Rhine continued its course through the English Channel and flowed into the North Atlantic off Brittany.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Ahorner, L., 1962. Untersuchungen zur quärtaren Biuchschollentektonik der Niederrheinischen Bucht. Eiszeitalter und Gegenwart 13: 24105.Google Scholar
Antoine,, P., Coutard, J.P., Gibbard, P., Hallegouet, B., Lautridou, J.P. & Ozouf, J.P., 2003. The Pleistocene rivers of the English Channel region. Journal of Quaternary Science 18: 227243.CrossRefGoogle Scholar
Aguirre, E. & Passini, G., 1995. The Pliocene-Pleistocene boundary. Episodes 8: 116120.Google Scholar
Bartz, J., 1936. Das Unterpliozan in Rheinhessen. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF 25: 121228.CrossRefGoogle Scholar
Berendsen, H.J.A., 1998. Birds-eye view of the Rhine-Meuse delta (the Netherlands). Journal of Coastal Research 14: 740752.Google Scholar
Berendsen, H.J.A., 2004. Rivers and the sea: how science went wrong explaining the formation of the Netherlands' coastal plain. In: Dietz, T., Hoekstra, P., & Thissen, F. (eds): The Netherlands and the North Sea. Dutch Geography 2000 – 2004. Netherlands Geographical Studies 325: 5663.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 311335.CrossRefGoogle Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Assen: Koninklijke Van Gorcum: 268 pp.Google Scholar
Bibus, E., 1980. Zur Relief-, Boden-und Sedimententwicklung am unteren Mittelrhein. Frankfurter Geowissenschaftliche Arbeiten Serie D 1: 296 pp.Google Scholar
Boenigk, W., 1978a. Zur petrographischen Gliederung der Mosbacher Sande im Dyckerhoff-Steinbruch, Wiesbaden/Hessen. Mainzer Naturwissenschaftliches Archiv 16: 91126.Google Scholar
Boenigk, W., 1978b. Gliederung der altquartären Ablagerungen in der Nieder-heinischen Bucht. Fortschritte in der Geologie von Rheinland und Westfalen 28: 135212.Google Scholar
Boenigk, W., 1981. Die Gliederung der tertiären Braunkohlendecksichten in der Ville (Niederrheinische Bucht). Fortschritte Geologie Rheinland und Westphalen 29: 193263.Google Scholar
Boenigk, W., 1982. Der Einfluss des Rheingrabensystems auf die Flussgeschichte des Rheins. Zeitschrift für Geomorphologie NF 42:167175.Google Scholar
Boenigk, W., 1987. Petrographische Untersuchungen jungtertiärer und quärtarer Sedimente am linken Oberrhein. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF 82: 113129.Google Scholar
Boenigk., W., 1995. Terrassenstratigraphie des Mittelpleistozäns am Niederhein und Mittelrhein. Mededelingen Rijks Geologische Dienst 52: 7181.Google Scholar
Boenigk, W. & Hoselmann, Ch., 2003. Tertiäre und unterpleistozäne Terrassen-ablagerungen am Mittelrhein. In: Schirmer, W. (ed.): Landschaftsgeschichte im europäischen Rheinland, GeoArcheoRhein 4: 81124.Google Scholar
Boenigk, W. S Frechen, M., 2005. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25: 550574.CrossRefGoogle Scholar
Bogaard, P. van den & Schmincke, H.U., 1990. Die Entwicklungsgeschichte des Mitelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes. In: Schirmer, W. (ed.): Rheingeschichte zwischen Mosel und Meuse, DEUQUA-Führer 1: 166190.Google Scholar
Bolliger, Th, Feijfar, O., Graf, H. & Kölin, D.W., 1996. Vorläufige Mitteilung über Funde von pliozänen Kleinsäugern ais den Höheren Deckenschottern des Irchels (Kt. Zürich). Eclogae geologicae Helvetiae 89: 10431048.Google Scholar
Bosch, J.H.A., Cleveringa, P. S Meijer, L, 2000. The Eemian stage in the Netherlands: history, character and new research. Geologie & Mijnbouw / Netherlands Journal of Geosciences 79: 135145.CrossRefGoogle Scholar
Bottke, H., 1963. Die Tonlagerstätten der Höhrer Löcher bei Vallendar/Rhein am Ostrand des Neuwieder Beckens. Notizblatt des hessischen Landesamtes für Bodenforschung 91: 256276.Google Scholar
Brauer, A., Endres, Ch. & Negendank, J.F.W., 1999. Late glacial calendar year chronology based on annually laminated sediments from Meerfelder Maar, Germany. Quaternary International 61: 1725.CrossRefGoogle Scholar
Brüning, H., 1970. Zur Klima-Stratigraphie der pleistozänen Mosbacher Sande bei Wiesbaden (Hessen). Mainzer Naturwisenschaftliches Archiv 9: 204256.Google Scholar
Brunnacker, K., Löscher, M., Tillmanns, W. & Urban, B., 1982. Correlation of the Quaternary terrace sequence in the Lower Rhine Valley and Northern Alpine Foothills of Central Europe. Quaternary Research 18: 152173.CrossRefGoogle Scholar
Busschers, F.S, Weerts, H.J.T., Wallinga, J., Cleveringa, P., Kasse, C. & de Wolf, H., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits -fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences 84: 2541.Google Scholar
Clague, J., 2006. Open letter to INQUA Executive Committee. Quaternary International 154/155: 158159.Google Scholar
Cohen, K., 2003. Differential subsidence withn a coastal prism. Late-Glacial -Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Netherlands Geographical Studies 316: 208 pp.Google Scholar
De Mulder, F.J., Geluk, M.C., Ritsema, I.L., Westerhoff, W.E. & Wong, Th.E. (eds), 2003. De ondergrond van Nederland. Wolters-Noordhoff (Groningen/ Houten): 370 pp.Google Scholar
Doebl, F. & Olbrecht, W.. 1974. An isobath map of the Tertiary base in the Rhinegrabe. In: lilies, J.H. & Fuchs, K. (eds): Approaches to Taphrogenisis. Schweizerbart (Stuttgart): 7172.Google Scholar
Ellwanger, D., Bibus, E., Bludau, W., Kösel, M. & Merkt, J., 1995. Baden-Württemberg. In: Benda, L. (ed.): Das Quartär Deutschlands, Stuttgart (Bornträger): 255295.Google Scholar
Ellwanger, D., Lämmermann-Bartherl, J. & Neeb, I., 2003. Eine landsschafts-übergreifende Lockergesteinsgliederung vom Alpenrand zum Oberrhein. In: Schirmer, W. (ed.): Landschaftsgeschichte im europäischen Rheinland, GeoArcheoRhein 4: 81124.Google Scholar
Felix-Henningsen, P., 1990. Die mesozoisch-teriäre Verwitterungsdecke im Rheinischen Schiefergebirge. Relief Boden Paläoklima 6: 167 pp.Google Scholar
Fetzer, K.D., Larres, K., Sabel, K.-J., Spies, E.-D. & Weidenfeller, M., 1995. Hessen, Rheinland-Pfalz, Sarrland. In: Benda, L. (ed.): Das Quartär Deutschlands, Stuttgart (Bornträger): 220254.Google Scholar
Florineth, D., 1998. Surface geometry of the Last Glacial Maximum (LGM) in the southeastern Swiss Alps (Graubünden) and its paleoclimatological significance. Eiszeitalter und Gegenwart 48: 2337.Google Scholar
Florineth, D. & Schlüchter, Ch., 1998. Reconstructing the Last Glacial Maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. Eclogae geologicae Helvetiae 91: 391407.Google Scholar
Giamboni, M., Ustaszewski, K., Schmid, S.M., Schuhmacher, M.E. & Wetzel, A., 2004. Plio-Pleistocene transpressional reactivation of Paleozoic and Paleogene structures in the Rhine-Bresse transformal zone (northern Switzerland and eastern France). International Journal of Earth Sciences (Geologische Rundschau) 93: 207223.CrossRefGoogle Scholar
Gibbard, P.L., 1988. The history of the great northwest European rivers during the past three million years. Philosophical Transactions of the Royal Society of London Series B 318: 559602.CrossRefGoogle Scholar
Gibbard, P.L., 1995. The formation of the Strait of Dover. In: Preece, R.C. (ed.): Island Britain: a Quaternary perspective. Geological Society Special Publication 96: 1526.Google Scholar
Gibbard, P.L., 2004. Quatenary … now you see it, now you don't. Quaternary International 129, 8991.Google Scholar
Gibbard, P.L., Krook, L. & Vandenberghe, J., 1995. Early Pleistocene depositional environments and stratigraphy at Öbel (Brüggen), Nordrhein-Westfalen, Germany. Mededelingen Rijks Geologische Dienst 52: 8396.Google Scholar
Gibbard, P.L. & Lautridou, J.P., 2003. The Quaternary history of the English Channel: an introduction. Journal of Quaternary Science 18: 195199.CrossRefGoogle Scholar
Gibbard, P.L., Smith, A.G., Zalasiewicz, J.A., Barry, T.L., Cantrill, D., Coe, A.L., Cope, J.C.W., Gale, A.S., Gregory, F.J., Powell, J.H., Rawson, P.F., Stone, P., Waters, C.N., 2005. What status for the Quaternary? Boreas 34: 16.Google Scholar
Goes, S., Spakman, W. & Bijwaard, H., 1999. A lower mantle source for central European volcanism. Science 286: 19281931.CrossRefGoogle ScholarPubMed
Graf, H., 1993. Die Deckenschotter der zentralen Nordschweiz. Diss ETH Zürich No. 10205: 151 pp.Google Scholar
Graf, H., 2000. Quartärgeologie zwischen Rhein, Thus und Aare (Kantone Aargau, Zurich und Schaffhausen) (Exkursion G am 28. Aprill 2000). Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF 82: 113129.CrossRefGoogle Scholar
Graf, H. & Hofmann, F., 2000. Zur Eiszeitgeologie des oberen Klettgau (Kanton Schaffhausen, Schweiz). Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF 82: 279315.CrossRefGoogle Scholar
Iilies, H., 1977. Ancient and recent rifting in the Rhine graben. Geologie en Mijnbouw 56: 329350.Google Scholar
Kaiser, E., 1903. Die Ausbildung des Rheintales zwischen Neuwieder Becken und Bonn-Colner-Bucht. Verhandlungen 14. deutscher Geographentag Köln: 206215.Google Scholar
Keller, B., 2000. Fazies der Molasse anhand eines Querschnittes durch das zentrale Schweizer Mitteland. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF 82: 5592.CrossRefGoogle Scholar
Keller, J., Kraml, M. & Henjes-Kunst, F., 2002. 40Ar/39Ar single crystal laser dating of early volcanism in the Upper Rhine Graben and Tectonic implications. Schweizerische Mineralogische und Petrographische Mitteilungen 82: 110.Google Scholar
Keller, O., 1994. Enstehung und Entwicklung des Bodensees -ein geologischer Lebenslauf. In: Holenstein, J., Keller, O., Maurer, H., Widmer, R. & Ziillig, H. (eds): Umweltwandel am Bodensee: 3392.Google Scholar
Keller, O., 2003. Die geologische Geschichte des Bodensees. Festschrift Bodensee (75 Jahre Yacht-Club Romanshorn). Ecomment AG (St. Gallen): 5880.Google Scholar
Keller, O. & Krayss, E., 1993. The Rhine-Linth glacier in the Upper Wurm: A model of the last alpine glaciation. Quaternary International 18: 1527.CrossRefGoogle Scholar
Keller, O. & Krayss, E., 2000. Die Hydrogeographie des Bodenseeraums in Vergangenheit und Gegenwart. Berichte der St. Gallischen Naturwissen-schaftlichen Gesellschaft 89: 3956.Google Scholar
Keller, O. & Krayss, E., 2005. Der Rhein-Linth Gletscher im letzten Hochglzial 2 Teil: Datierung und Modelle der Rhein-Linth-Vergletscherung, Klimarekonstruktionen. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 150: 6985.Google Scholar
Klostermann, J., 1995. Nordrhein-Westfalen. In: Benda, L. (ed.): Das Quartär Deutschlands, Stuttgart (Bornträger): 5994.Google Scholar
Krayss, E., 1996. Late glacial back-melting marks of the alpine icestream network (Rhine-Glacier, Wurm). Eclogae geologicae Helvetiae 89: 11051113.Google Scholar
Laubscher, H., 2001. Plate interactions at the southern end of the Rhine graben. Tectonophysics 343: 119.CrossRefGoogle Scholar
Lippolt, H.J., Gentner, W. & Wimmenauer, W., 1963. Altersbestimmungen nach der Kalium-Argon-Methode an tertiären Eruptivgesteinen Sudwest-deutschlands. Jahrbuch des geologischen Landesamtes Baden-Württemberg 6: 507538. Google Scholar
Lift, Th., Schmincke, H.U. & Kromer, B., 2003. Enviornmental response to climate and volcanic events in central Europe during the Weichelian Lateglacial. Quaternary Science Reviews 22: 732.Google Scholar
Meyer, W., 1994. Geologie der Eifel. Schweizerbart (Stuttgart): 618 pp.Google Scholar
Michon, L., Van Balen, R.T., Merle, O. & Pagnier, H., 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics 367: 101126. CrossRefGoogle Scholar
Mordziol, C, 1908. Über das jüngere Tertiär und das Dilluvium des rechtsrheinischen Teiles des Neuwieder Beckens. Jahrbuch der preußischen geologischen Landesanstalt 29: 348430.Google Scholar
Nabholz, W.K.. 1975. Geologischer Üherblick über die Schiefersackung des mittleren Lugnez und über das Bergsturzgebiet Ilanz-Flims-Reichenau-Domleschg. Bulletin des Vereins Schweizer Petroleum-Geologen und -Ingenieure 42: 3854. Google Scholar
Overeem, I., Weltje, G.J., Bishop-Kay, C. & Kroonenberg, S.B., 2001. The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply? Basin Research 13: 293312.Google Scholar
Partidge, T.C., 1997. Reassessment of the position of the Plio-Pleistocene boundary: Is there a case for lowering it to the Gauss-Matuyama palaeo-magnetic reversal? Quaternary International 40: 510.CrossRefGoogle Scholar
Penck, A. & Brückner, E., 1901–1909. Die Alpen im Eiszeitalter. Tauchnitz (Leipzig): 1157 pp.Google Scholar
Petit, C, Campy, M., Chaline, J. & Bonvalot, J., 1996. Major palaeohydrographic changes in Alpine foreland during the Pliocene-Pleistocene Boreas 25: 131143. Google Scholar
Pfiffner, O.A., 1993. The structure of the Helvetic nappes and its relation to the mechanical stratigraphy. Journal of Structural Geology 15: 511521. CrossRefGoogle Scholar
Pfiffner, O.A., Heitzmann, P., Lehner, P., Frei, W., Pugin, P. & Felber, M., 1997. Incision and backfilling of Alpine valleys: Pliocene, Pleistocene and Holocene processes. In: NFP20-Atlas: Deep structure of the Swiss Alps.Google Scholar
Poschinger, A. von & Haas, U., 1997. Der Flimser Bergsturz, doch ein warmzeitliches Ereignis? Bulletin angewandte Geologie 2: 3546.Google Scholar
Preusser, F. & Graf, H.R., 2002. Erste Ergebnisse von Lumineszenzdatierungen eiszeitlicher Ablagerungen der Nordschweiz. Jahrbuch und Mitteilungen des Oberrheinischen Geologischen Vereins 107: 419438. CrossRefGoogle Scholar
Quitzow, H., 1978. Der Abfall der Eifel zur Niederrheinischen Bucht im Gebiet der unteren Ahr. Fortschritte Geologie Rheinland und Westphalen 28: 950.Google Scholar
Remané, J., Faure-Muret, A. & Odin, G.S., 2002. International Stratigraphic Chart. International Commission on Stratigraphy, UNESCO/IUGS. Google Scholar
Reynaud, J.Y., Tessier, B., Auffret., J.-P., Berné, S., Batist, M. de, Marsset, T. & Walker, P., 2003. The offshore Quaternary sediment bodies of the English Channel and its western approaches. Journal of Quaternary Science 18: 361371. CrossRefGoogle Scholar
Rijsdijk, K.F., Passchier, S., Weerts, H.J.T., Laban, C, van Leeuwen, R.J.W & Ebbing, J.H.J., 2005. Revised Upper Cenozoic stratigraphy of the Dutch sector of the North Sea Basin: towards an integrated lithostraigraphic, seismostratigraphic and allostratigraphic approach. Netherlands Journal of Geosciences 84: 129146. CrossRefGoogle Scholar
Schirmer, W., 1990a. Die Goldene Meile. In: Schirmer, W. (ed.): Rheingeschichte zwischen Mosel und Meuse, DEUQUA-Führer 1: 9498. Google Scholar
Schirmer, W., 1990b. Terrassentreppe am Ostrand von Neuwied. In: Schirmer, W. (ed.): Rheingeschichte zwischen Mosel und Meuse, DEUQUA-Führer 1: 99104.Google Scholar
Schirmer, W., 2003. Stadien der Rheingeschichte. In: Schirmer, W. (ed.): Land-schaftsgeschichte im europäischen Rheinland (GeoArcheoRhein 4): 2180. Google Scholar
Schlüchter, Ch., 2004. The Swiss glacial record - a schematic summary. In: Ehler, J., & Gibbard, P.L. (eds): Quaternary Glaciations - Extent and Chronology (Developments in Quaternary Science 2): 413418.Google Scholar
Schneider, J,-L., Pollet, N., Chapron, E., Wessels, M. & Wassmer, P., 2004. Signature of Rhine Valley sturzstrom dam failures in Holocene sediments of Lake Constance, Germany. Sedimentary Geology 169: 7591.CrossRefGoogle Scholar
Schnütgen, A., 2003. Die Petrographie und Verbreitung tertiärer Schotter der Vallendar-Fazies im Rheinischen Schiefergebirge, ihre paläoklimatologische und -geographische Bedeutung. In: Schirmer, W. (ed.): Landschaftsgeschichte im europäischen Rheinland, GeoArcheoRhein 4: 155191.Google Scholar
Schokker, J., 2003. Patterns and processes in a Pleistocene fluvio-aeolian environment. Nederlandse Geografische Studies 314: 141. pp.Google Scholar
Schreiber, U. & Rotsch, S., 1998. Cenozoic block rotation according to a conjugate shear system in central Europe - indications from palaeomagnetic measurements. Tectonophysics 299: 111142.CrossRefGoogle Scholar
Semmel, A., 1983. Die plio-pleistozänen Deckschichten im Steinbruch Mainz-Weisenau. Geologisches Jahrbuch Hessen 111: 219233.Google Scholar
Sissingh, W., 1997.Tectonostratigraphy of the North Alpine Foreland Basin: correlation of Tertiary depositional cycles and orogenic phases. Tectonophysics 282: 223256.CrossRefGoogle Scholar
Sissingh, W., 1998.Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300: 249284.CrossRefGoogle Scholar
Sissingh, W., 2001. Tectonostratigraphy of the Western Alpine Foreland: correlation of Tertiary sedimentary sequences, changes in eustatic sea-level and stress regimes. Tectonophysics 333: 361400.CrossRefGoogle Scholar
Sissingh, W., 2003. Teriary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 229263.CrossRefGoogle Scholar
Ter Wee, M.W., 1983. The Elsterian Glacition in the Nethelands. In: Ehlers, J. (Ed): Glacial deposits in north-west Euope: 413415.Google Scholar
Thome, K.N., 1959. Das Inlanders am Niederrhein. Fortschritte in der Geologie von Rheinland und Westfalen 4: 197246.Google Scholar
Törnqvist, T.E., 1995. Alluvial architecture of the Quaternary Rhine-Meuse system in the Netherlands - discussion. Geologie & Mijnbouw 74: 183186.Google Scholar
Törnqvist, T.E., Wallinga, J., Murray, A.S., Wolf, H. de, Cleveringa, P. & De Gans, W., 2000. Response of the Rhine-Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment. Global and Planetary Change 27: 89111.CrossRefGoogle Scholar
Törnqvist, T.E., Wallinga, J. & Busschers, F.S., 2003. Timing of the last sequence boundary in a fluvial setting near the highstand shoreline Insights from optical dating. Geology 31: 279282.2.0.CO;2>CrossRefGoogle Scholar
Villinger, E., 1998. Zur Flußgeschichte von Rhein und Donau in Südwestdeutschland. Jahrbuch und Mitteilungen des Oberrheinischen Geologischen Vereins NF 80: 361398.CrossRefGoogle Scholar
Van Husen, D., 2000. Geological processes during the Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft 92: 135156.Google Scholar
Van de Meene, E.A. & Zagwijn, W.H., 1978. Die Rheinläufe im deutsch-niederländischen Grenzgebiet seit der Saale-Kaltzeit. Überblick neuer geologischer und pollenanalytischer Untersuchungen. Fortschritte in der Geologie von Rheinland und Westfalen 28: 345359.Google Scholar
Wallinga, J., Törnqvist, T.E., Busschers, F.S. & Weerts, H.J.T., 2004. Allogenic forcing of the late Quaternary Rhine Meuse fluvial record: the interplay of sea-level change, climate change and crustal movements. Basin Research 16: 535547.CrossRefGoogle Scholar
Weidenfeller, M. & Zöller, I., 1996. Paläoböden und Neotektonik im Profil Forst am Westrand des Oberrheingrabens. Frankfurter Geowissenschaftliche Arbeiten D20: 89100.Google Scholar
Wessles, M., 1998. Natural environmental change indicated by Late Glacial and Holocene sediments from Lake Constance, Germany, Paleogeography, Paleoclimatology, Paleoecology 140: 421432.CrossRefGoogle Scholar
Zagwijn, W.H., 1974. The palaeogeographic evolution of the Netherlands during the Quaternary. Geologie en Mijnbow 5: 369385.Google Scholar
Zagwijn, W.H., 1985. An outline of the Quaternary stratigraphy of the Netherlands. Geologie en Mijnbouw 64: 1724.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: a case history of coastal lowland evolution. Geologie en Mijnbouw 68: 107120.Google Scholar
Zagwijn, W.H., 1992. The beginning of the ice age in Europe and its major subdivisions. Quaternary Science Reviews 11: 583591.CrossRefGoogle Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw 73: 99127.Google Scholar
Zonneveld, J.I.S., 1958. Lithostratigrafische eenheden in het Nederlandse Pleistoceen. Mededelingen von de Geologische Sichting Nieuwe Serie 12: 3164.Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterisation and evolution of the River Rhine system
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterisation and evolution of the River Rhine system
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterisation and evolution of the River Rhine system
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *