Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:12:16.976Z Has data issue: false hasContentIssue false

Alluvial architecture of fluvio-deltaic successions: a reviewwith special reference to Holocene settings

Published online by Cambridge University Press:  19 June 2017

M.J.P. Gouw*
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands Email: marc.gouw@tno.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alluvial architecture has been subject of many studies because of theoccurrence of natural resources in ancient fluvial successions. This paperprovides an overview of the current state of research on alluvialarchitecture with special reference to Holocene fluvio-deltaic settings.Several examples from modern fluvio-deltaic areas, especially the HoloceneRhine-Meuse delta (the Netherlands) and the Lower Mississippi Valley(U.S.A.), are used to illustrate the architectural elements that can bedistinguished in fluvial successions and to show the influence of thevarious controls on alluvial architecture (base level, climate, tectonism,aggradation, avulsion, and compaction). Avulsion is regarded as a principalprocess in the formation of fluvio-deltaic sequences, because it determinesthe location and number of active channels on the floodplain. The avulsionmechanism is still subject of debate, though. A brief description of theevolution of process-based alluvial-architecture models is given. Thesemodels simulate the proportion and distribution of coarse-grained channelbelts in fine-grained overbank deposits. The major drawback of thepresent-day alluvial-architecture models is the lack of (three-dimensional)quantitative field data to test and validate them. The paper concludes withthe suggestion to collect more architectural data from natural fluvialsettings, to improve simulation of channel-belt geometry inalluvial-architecture models, and to implement new data and knowledge offluvial processes into models.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Alexander, J. & Leeáer, U.R., 1987. Active tectonic control on alluvial architecture. In: Etheridge, F.G., Flores, R.M. & Harvey, M.D. (eds): Recent developments in fluvial sedimentology. Society of Economic Paleontologists and Mineralogists Special Publication 39: 243252.Google Scholar
Allen, J.R.L., 1964. Studies in fluviatile sedimentation: six cyclothems from the Lower Old Red Sandstone, Anglo-Welsh Basin. Sedimentology 3: 163198.10.1111/j.1365-3091.1964.tb00459.xGoogle Scholar
Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5: 89191.10.1111/j.1365-3091.1965.tb01561.xGoogle Scholar
Allen, J.R.L., 1978. Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion-controlled alluvial suites. Sedimentary Geology 21: 129147.10.1016/0037-0738(78)90002-7Google Scholar
Allen, J.R.L., 1979. Studies in fluviatile sedimentation: an elementary model for the connectedness of avulsion-related channel sand bodies. Sedimentary Geology 24: 253267.10.1016/0037-0738(79)90072-1Google Scholar
Ashworth, P.J., Best, J.L. & Jones, M., 2004. Relationship between sediment supply and avulsion frequency in braided rivers. Geology 32: 2124.10.1130/G19919.1Google Scholar
Ashworth, P.J., Best, J.L. & Jones, M.A., 2007. The relationship between channel avulsion, now occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology 54: 497513.10.1111/j.1365-3091.2006.00845.xGoogle Scholar
Asian, A. & Autin, W.J., 1999. Evolution of the Holocene Mississippi river flood-plain, Ferriday, Louisiana: insights on the origin of fine-grained floodplains. Journal of Sedimentary Research 69: 800815.10.2110/jsr.69.800Google Scholar
Asian, A. & Blum, M.D., 1999. Contrasting styles of Holocene avulsion, Texas Gulf Coastal Plain, USA. In: Smith, N.D. & Rogers, J. (eds): Fluvial Sedimentology VI. Special Publication of the International Association of Sedimentologists 28: 193209.Google Scholar
Asian, A., Autin, W.J. & Blum, M.D., 2005. Causes of river avulsion: insights from the Late Holocene avulsion history of the Mississippi River, USA. Journal of Sedimentary Research 75: 650664.10.2110/jsr.2005.053Google Scholar
Autin, W.J., Burns, S.F., Miller, B.J., Saucier, R.T. & Snead, J.L, 1991. Quaternary geology of the Lower Mississippi Valley. In: Morrison, R.B. (ed.): Quaternary Nonglacial Geology: Conterminous U.S. Geological Survey of America, The Geology of North America K-2: 547582.Google Scholar
Berendsen, H.J.A., 1982. De genese van het landschap in het zuiden van de provincie Utrecht: een fysisch-geografische studie. Published PhD Thesis Utrecht University. Utrechtse Geografische Studies 10: 256 pp.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 311335.10.1016/S0031-0182(00)00073-0Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Koninklijke Van Gorcum (Assen): 268 pp.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E.A., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). In: Frenzel, B. (ed.): European river activity and climate change during the Lateglacial and Holocene. ESF Project European Palaoklimaforschung. Palaeoclimate Research 14: 151171.Google Scholar
Blum, M.D. & Price, D.M., 1998. Quaternary alluvial plain construction in response to interacting glacio-eustatic and climatic controls, Texas Gulf Coast Plain. In: Shanley, K.W. & McCabe, P.J. (eds): Relative role of Eustasy, Climate, and Tectonism in Continental Rocks. Society of Economic Paleontologists and Mineralogists Special Publication 59: 3148.Google Scholar
Blum, M.D. & Tornqvist, T.E., 2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47: 248.10.1046/j.1365-3091.2000.00008.xGoogle Scholar
Bridge, J.S., 1999. Alluvial architecture of the Mississippi valley: predictions using a 3D simulation model. In: Marriott, S.B. & Alexander, J. (eds): Floodplains: Interdisciplinary Approaches. Geological Society of London, Special Publication 163: 269278.Google Scholar
Bridge, J.S., 2003. Rivers and Floodplains; Forms, Processes, and Sedimentary Record. Blackwell Publishing (Oxford): 491 pp.Google Scholar
Bridge, J.S. & Karssenberg, D., 2005. Simulation of now and sedimentary processes, including channel bifurcation and avulsion, on alluvial fans. (abstract). 8th International Conference on Fluvial Sedimentology, Delft, the Netherlands, Abstracts, Delft, p. 70.Google Scholar
Bridge, J.S. & Leeder, M.R., 1979. A simulation model of alluvial stratigraphy. Sedimentology 26: 617644.10.1111/j.1365-3091.1979.tb00935.xGoogle Scholar
Bridge, J.S. & Mackey, S.D., 1993a. A revised alluvial stratigraphy model. In: Marzo, M. & C., Puigdefabregas (eds): Alluvial Sedimentation. Special Publication of the International Association of Sedimentologists 17: 319336.Google Scholar
Bridge, J.S. & Mackey, S.D., 1993b. A theoretical study of fluvial sandstone body dimensions. In: Flint, S. & Bryant, I.D. (eds): The Geological Modeling of Hydrocarbon Reservoirs. International Association of Sedimentologists Special Publication 15: 213236.Google Scholar
Bridge, J.S., Jalfin, G.A. & Georgieff, S.M., 2000. Geometry, lithofacies, and spatial distribution of Cretaceous fluvial sandstone bodies, San Jorge Basin, Argentina: outcrop analog for the hydrocarbon-bearing Chubut Group. Journal of Sedimentary Research 70: 341359.10.1306/2DC40915-0E47-11D7-8643000102C1865DGoogle Scholar
Bryant, M., Falk, P. & Paola, C., 1995. An experimental study of avulsion frequency and rate of deposition. Geology 23: 365368.10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;22.3.CO;2>Google Scholar
Chappell, J., Omura, A., Ezat, T., McCulloch, M., Pandolfi, J., Ota, Y. & Pillans, B., 1996. Reconciliation of late Quaternary sea-levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141: 227236.10.1016/0012-821X(96)00062-3Google Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism. Late-Glacial – Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Published PhD Thesis Utrecht University. Netherlands Geographical Studies 316: 172 pp.Google Scholar
Cohen, K.M., 2005. 3D Geostatistical interpolation and geological interpretation of palaeo-groundwater rise in the Holocene coastal prism in the Netherlands. In: Giosan, L. & Bhattacharya, J.P. (eds): River deltas – Concepts, models, and examples. SEPM Special Publication 83: 341364.Google Scholar
Cohen, K.M., Stouthamer, E. & Berendsen, H.J.A., 2002. Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Meuse delta, the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 389405.10.1017/S0016774600022678Google Scholar
Cohen, K.M., Gouw, M.J.P. & Holten, J.P., 2005. Fluvio-deltaic ñood basin deposits recording differential subsidence within a coastal prism (central Rhine-Meuse delta, the Netherlands). In: Blum, M.D., Marriott, S.B. & Leclair, S.F. (eds): Fluvial Sedimentology VII. Special Publication of the International Association of Sedimentologists 35: 295320.Google Scholar
Collinson, J.D., 1978. Vertical sequence and sand body shape in alluvial sequences. In: Miall, A.D. (ed.): Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir 5: 577586.Google Scholar
Farrell, K.M., 1987. Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana. In: Etheridge, F.G., Flores, R.M. & Harvey, M.D. (eds): Recent Developments in Fluvial Sedimentology. Society of Economic Paleontologists and Mineralogists Special Publication 39: 111120.Google Scholar
Farrell, K.M., 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology 139: 93150.10.1016/S0037-0738(00)00150-0Google Scholar
Fielding, C.R. & Crane, R.C., 1987. An application of statistical modeling to the prediction of hydrocarbon recovery factors in fluvial reservoir sequences. In: Etheridge, F.G., Flores, R.M., & Harvey, M.D. (eds): Recent Developments in Fluvial Sedimentology. Society of Economic Paleontologists and Mineralogists Special Publication 39: 321327.Google Scholar
Fisk, H.N., 1944. Geological investigation of the alluvial valley of the Lower Mississippi River. Mississippi River Commission (Vicksburg, Mississippi): 78 pp.Google Scholar
Fisk, H.N., 1947. Fine-grained alluvial deposits and their effects on Mississippi River activity. U.S. Army Corps of Engineers, Mississippi River Commission (Vicksburg, Mississippi): 82 pp.Google Scholar
Friend, P.F., 1983. Towards the field classification of alluvial architecture or sequence. In: Collinson, J.D. & Lewin, J. (eds): Modern and Ancient Fluvial Systems. International Association of Sedimentologists Special Publication 6: 345354.Google Scholar
Friend, P.F., Slater, M.J. & Williams, R.C., 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Geological Society of London Journal 136: 3946.Google Scholar
Gibling, M.R., 2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research 76: 731770.10.2110/jsr.2006.060Google Scholar
Gouw, M.J.P., in press. Alluvial architecture of the Holocene Rhine-Meuse delta (the Netherlands) and the Lower Mississippi Valley (U.S.A.). PhD Thesis Utrecht University. Netherlands Geographical Studies.Google Scholar
Gouw, M.J.P. & Berendsen, H.J.A., 2007. Variability of channel-belt dimensions and the consequences for alluvial architecture: observations from the Holocene Rhine-Meuse delta (the Netherlands) and Lower Mississippi Valley (USA). Journal of Sedimentary Research 77: 124138.10.2110/jsr.2007.013Google Scholar
Gouw, M.J.P. & Erkens, G., 2007. Architecture of the Holocene Rhine-Meuse delta (the Netherlands) – A result of changing external controls. In: Stouthamer, E. & Ten Brinke, W. (eds): Fluvial Sedimentology. Netherlands Journal of Geosciences / Geologie en Mijnbouw 86: 2354.10.1017/S0016774600021302Google Scholar
Heller, P.L. & Paola, C., 1996. Downstream changes in alluvial architecture: an exploration of controls on channel-stacking pattern. Journal of Sedimentary Research 66: 297306.Google Scholar
Holbrook, J. & Schumm, S.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305: 287306.10.1016/S0040-1951(99)00011-6Google Scholar
Jelgersma, S., 1961. Holocene sea-level changes in the Netherlands. Published PhD Thesis University Leiden. Mededelingen Geologische Stichting CVI-1: LOI pp.Google Scholar
Jones, L.S. & Schumm, S.A., 1999. Causes of avulsion: an overview. In: Smith, N.D. & Rogers, J. (eds): Fluvial Sedimentology VI. Special Publication of the International Association of Sedimentologists 28: 171178.Google Scholar
Karssenberg, D., Tornqvist, T.E. & Bridge, J.S., 2001. Conditioning a process-based model of sedimentary architecture to well data. Journal of Sedimentary Research 71: 868879.10.1306/051501710868Google Scholar
Karssenberg, D. & Bridge, J.S., 2005. A 3D model simulating sediment transport, erosion, and deposition within a network of channel belts and an associated floodplain. (abstract). 8th International Conference on Fluvial Sedimentology, Delft, the Netherlands, Abstracts, Delft, p. 151.Google Scholar
Karssenberg, D. & Bridge, J.S., in review. A three-dimensional model of sediment transport, erosion, and deposition within a network of channel belts, flood-plain and hillslope: extrinsic and intrinsic controls on floodplain dynamics and alluvial architecture. Submitted to Sedimentology.Google Scholar
Kolb, C.R. & Van Lopik, J.R., 1958. Geology of the Mississippi River deltaic plain, southeastern Louisiana. Technical Report 3-483, U.S. Army Corps of Engineers, Mississippi River Commission (Vicksburg, Mississippi): 120 pp.Google Scholar
Kolb, C.R., Steinriede, W.B., Krinitzsky, E.I., Saucier, R.T., Mabrey, P.R., Smith, F.L. & Fleetwood, A.R., 1968. Geological investigation of the Yazoo Basin, Lower Mississippi Valley. Technical Report 3-480, U.S. Army Corps of Engineers, Mississippi River Commission (Vicksburg, Mississippi): 12 pp.Google Scholar
Kombrink, H., Bridge, J.S. & Stouthamer, E., 2007. The alluvial architecture of the Coevorden Field (Upper Carboniferous), the Netherlands. In: Stouthamer, E. & Ten Brinke, W. (eds): Fluvial Sedimentology. Netherlands Journal of Geosciences / Geologie en Mijnbouw 86: 314.10.1017/S0016774600021284Google Scholar
Leeder, M.R., 1978. A quantitative stratigraphie model for alluvium, with special reference to channel deposit density and interconnectedness. In: Miall, A.D. (ed.): Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir 5: 587596.Google Scholar
Leeder, M.R., 1993. Tectonic controls upon drainage basin development, river channel migration and alluvial architecture: implications for hydrocarbon reservoir development and characterization. In: North, C.R & Prosser, D.J. (eds): Characterization of Fluvial and Aeolian Reservoirs. Geological Society of London Special Publication 73: 722.10.1144/GSL.SP.1993.073.01.02Google Scholar
Leopold, L.B. & Wolman, M.G., 1957. River channel patterns: braided, meandering and straight. Geological Survey Professional Paper 282-B: 283300.Google Scholar
Lopez, S., Cojan, I. & Rivoirard, et Galli, A., in press. Process-based stochastic modeling: meandering channelized reservoirs. To be published in: De Boer, P.L., Postma, G., Van der Zwan, C.J., Burgess, P.M. & Kukla, P. (eds): Analogue and Numerical Forward Modeling of Sedimentary Systems; From Understanding to Prediction. International Association of Sedimentologists Special Publication 39.Google Scholar
Mackey, S.D. & Bridge, J.S., 1995. Three-dimensional model of alluvial stratigraphy: theory and application. Journal of Sedimentary Research 65: 731.10.1306/D42681D5-2B26-11D7-8648000102C1865DGoogle Scholar
Makaske, B., 1998. Anastomosing rivers: forms, processes and sediments. Published PhD Thesis Utrecht University. Netherlands Geographical Studies 249: 287 pp.Google Scholar
Makaske, B., 2001. Anastomosing rivers; a review of their classification, origin and sedimentary products. Earth-Science Reviews 53: 149196.10.1016/S0012-8252(00)00038-6Google Scholar
Makaske, B., Smith, O.G. & Berendsen, H.J.A., 2002. Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada. Sedimentology 49: 10491071.10.1046/j.1365-3091.2002.00489.xGoogle Scholar
Makaske, B., Berendsen, H.J.A. & Van Ree, M.H.M. , 2007. Middle Holocene avulsion-belt deposits in the central Rhine-Meuse delta, the Netherlands. Journal of Sedimentary Research 77: 110123.10.2110/jsr.2007.004Google Scholar
Meckel, T.A., Ten Brink, U.S. & Williams, S.J., 2007. Sediment compaction rates and subsidence in deltaic plains: numerical constraints and strati-graphic influences. Basin Research 19: 1931.10.1111/j.1365-2117.2006.00310.xGoogle Scholar
Mohrig, D., Heller, P.L., Paola, C. & Lyons, W.J., 2000. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin 112: 17871803.10.1130/0016-7606(2000)112<1787:IAPFAA>2.0.CO;22.0.CO;2>Google Scholar
Morozova, G.S. & Smith, N.D., 1999. Holocene avulsion history of the lower Saskatchewan fluvial system, Cumberland Marshes, Saskatchewan-Manitoba, Canada. Special Publication of the International Association of Sedimentologists 28: 231249.Google Scholar
Morozova, G.S. & Smith, N.D., 2003. Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sedimentary Geology 157: 1529.10.1016/S0037-0738(02)00192-6Google Scholar
Nadon, G.C., 1994. The genesis and recognition of anastomosed fluvial deposits: data from the St. Mary River Formation, southwestern Alberta, Canada. Journal of Sedimentary Research 64: 451463.Google Scholar
Paola, C., 2000. Quantitative models of sedimentary basin filling. Sedimen-tology 47 (Suppl. 1): 121178.10.1046/j.1365-3091.2000.00006.xGoogle Scholar
Pérez-Arlucea, M. & Smith, N.D., 1999. Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research 69: 6273.10.2110/jsr.69.62Google Scholar
Pizzuto, J.E., 1987. Sediment diffusion during overbank flows. Sedimentology 34: 301317.10.1111/j.1365-3091.1987.tb00779.xGoogle Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. PhD Thesis Wageningen. Bodemkundige Studies 3. Verslagen van Landbouwkundige Onderzoekingen 63.11 (‘s-Gravenhage): 156 pp.Google Scholar
Ryseth, A. & Ramm, M., 1996. Alluvial architecture and differential subsidence in the Statfjord Formation, North Sea: prediction of reservoir potential. Petroleum Geoscience 2: 271287.10.1144/petgeo.2.3.271Google Scholar
Ryseth, A., Fjellbirkeland, H., Kloster Osmundsen, I., Skålnes, Å. & Zachariassen, E., 1998. High-resolution stratigraphy and seismic attribute mapping of a fluvial reservoir: Middle Jurassic Ness Formation, Oseberg Field. American Association of Petroleum Geologists Bulletin 82: 16271651.Google Scholar
Saucier, R.T., 1994. Geomorphology and Quaternary geologic history of the Lower Mississippi Valley. 2 Volumes. U.S. Army Corps of Engineers Waterways Experiment Station, Mississippi River Commission (Vicksburg, Mississippi): 364 pp.Google Scholar
Schumm, S.A., 1968. Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geological Society of America Bulletin 79: 15731588.10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2Google Scholar
Schumm, S.A., Rutherford, I.D. & Brooks, J., 1994. Pre-cutoff morphology of the Lower Mississippi River. In: Schumm, S.A. & Winkley, B.R. (eds): The Variability of Large Alluvial Rivers. American Society of Civil Engineers Press (New York): 1345.Google Scholar
Shanley, K.W. & McCabe, P.J., 1993. Alluvial architecture in a sequence stratigraphie framework: a case history from the Upper Cretaceous of southern Utah, USA. International Association of Sedimentologists Special Publication 15: 2156.Google Scholar
Slingerland, R. & Smith, N.D., 1998. Necessary conditions for a meandering-river avulsion. Geology 26: 435438.10.1130/0091-7613(1998)026<0435:NCFAMR>2.3.CO;22.3.CO;2>Google Scholar
Slingerland, R. & Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32: 257285.10.1146/annurev.earth.32.101802.120201Google Scholar
Smith, N.D. & Pérez-Arlucea, M., 1994. Fine-grained splay deposition in the avulsion belt of the Lower Saskatchewan River, Canada. Journal of Sedimentary Research 64: 159168.Google Scholar
Smith, N.D., Cross, T.A., Dufficy, J.P. & Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36: 123.10.1111/j.1365-3091.1989.tb00817.xGoogle Scholar
Smith, N.D., Slingerland, R.L., Pérez-Arlucea, M. & Morozova, G.S., 1998. The 1870s avulsion of Saskatchewan River. Canadian Journal of Earth Sciences 35: 453466.10.1139/e97-113Google Scholar
Stanley, D.J. & Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265: 228231.10.1126/science.265.5169.228Google Scholar
Stouthamer, E., 2001a. Holocene avulsions in the Rhine-Meuse delta, the Netherlands. Published PhD Thesis Utrecht University. Netherlands Geographical Studies 283: 211 pp.Google Scholar
Stouthamer, E., 2001b. Sedimentary products of avulsions in the Holocene Rhine-Meuse Delta, the Netherlands. Sedimentary Geology 145: 7392.10.1016/S0037-0738(01)00117-8Google Scholar
Stouthamer, E. 2005. Reoccupation of channel belts and its influence on alluvial architecture in the Holocene Rhine-Meuse delta, the Netherlands. In: Giosan, L. & Bhattacharya, J.P. (eds): River deltas – Concepts, models, and examples. SEPM Special Publication 83: 319339.Google Scholar
Stouthamer, E. & Berendsen, H.J.A., 2000. Factors controlling the Holocene avulsion history of the Rhine-Meuse delta (the Netherlands). Journal of Sedimentary Research 70: 10511064.10.1306/033000701051Google Scholar
Stouthamer, E. & Berendsen, H.J.A., 2001. Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine-Meuse delta, the Netherlands. Journal of Sedimentary Research 71: 589598.10.1306/112100710589Google Scholar
Stouthamer, E. & Berendsen, H.J.A., 2007. Avulsion: The relative roles of autogenic and allogenic processes. Sedimentary Geology 198: 309325.10.1016/j.sedgeo.2007.01.017Google Scholar
Swenson, J.B., 2005. Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion. Geophysical Research Letters 32: L23404, doi:10.1029/2005GL024758.10.1029/2005GL024758Google Scholar
Tornqvist, T.E., 1993a. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, the Netherlands. Published PhD Thesis Utrecht University. Netherlands Geographical Studies 166: 169 pp.Google Scholar
Tornqvist, T.E., 1993b. Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (central Netherlands) controlled by sea-level rise and subsoil erodibility. Journal of Sedimentary Petrology 63: 683693.Google Scholar
Tornqvist, T.E., 1994. Middle and Late Holocene avulsion history of the River Rhine (Rhine-Meuse delta, the Netherlands). Geology 22: 711714.10.1130/0091-7613(1994)022<0711:MALHAH>2.3.CO;22.3.CO;2>Google Scholar
Tornqvist, T.E. & Bridge, J.S., 2002. Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology 49: 891905.10.1046/j.1365-3091.2002.00478.xGoogle Scholar
Tornqvist, T.E., Van Ree, M.H.M. & Faessen, E.L.J.H., 1993. Longitudinal facies architectural changes of a Middle Holocene anastomosing distributary system (Rhine-Meuse delta, central Netherlands), in: Fielding, C.R. (ed.): Current Research in Fluvial Sedimentology. Sedimentary Geology 85: 203219.Google Scholar
Tornqvist, T.E., Kidder, T.R., Autin, W.J., Van der Borg, K., De Jong, A.F.M., Klerks, C.J.W., Snijders, E.M.A., Storms, J.E.A., Van Dam, R.L. & Wiemann, M.C., 1996. A revised chronology for Mississippi River Subdeltas. Science 273: 16931696.10.1126/science.273.5282.1693Google Scholar
Tye, R.S., Bhattacharya, J.P., Lorsong, J.A., Sindelar, S.T., Knock, D.G., Puls, D.D. & Levinson, R.A., 1999. Geology and stratigraphy of fluvio-deltaic deposits in the Ivishak Formation; applications for development of Prudhoe Bay Field, Alaska. American Association of Petroleum Geologists Bulletin 83: 15881623.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.10.1016/0277-3791(95)00043-OGoogle Scholar
Van de Plassche, O., 1982. Sea-level change and water level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 93 pp.Google Scholar
Van der Woude, J.D., 1984. The fluviolagoonal palaeoenvironment in the Rhine/Meuse deltaic plain. Sedimentology 31: 395400.10.1111/j.1365-3091.1984.tb00867.xGoogle Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W., 1991. Holocene water level development in the Netherlands river area: implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311326.Google Scholar
Weerts, H.J.T., 1996. Complex Confining Layers. Architecture and hydraulic properties of Holocene and Late Weichselian deposits in the fluvial Rhine-Meuse delta, the Netherlands. Published PhD Thesis Utrecht University. Netherlands Geographical Studies 213: 189 pp.Google Scholar
Weerts, H.J.T. & Bierkens, M.F.P., 1993. Geostatistical analysis of overbank deposits of anastomosing and meandering fluvial systems; Rhine-Meuse delta, the Netherlands. In: Fielding, C.R. (ed.): Current Research in Fluvial Sedimentology. Sedimentary Geology 85: 221232 Google Scholar
Williams, G.P., 1986. River meanders and channel size. Journal of Hydrology 88: 147164.10.1016/0022-1694(86)90202-7Google Scholar
Wolfert, H.P., 2001. Geomorphological change and river rehabilitation; case studies on lowland fluvial systems in the Netherlands. Published PhD Thesis Utrecht University. Alterra Scientific Contributions 6: 200 pp.Google Scholar