Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.344 Render date: 2022-08-16T00:49:51.621Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Robust stylometric analysis and author attribution based on tones and rimes

Published online by Cambridge University Press:  10 April 2019

Renkui Hou*
Affiliation:
Department of Linguistics, College of Humanities, Guangzhou University, Guangzhou, China Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Chu-Ren Huang
Affiliation:
Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
*
*Corresponding author. Email: hourk0917@163.com

Abstract

In this article, we propose an innovative and robust approach to stylometric analysis without annotation and leveraging lexical and sub-lexical information. In particular, we propose to leverage the phonological information of tones and rimes in Mandarin Chinese automatically extracted from unannotated texts. The texts from different authors were represented by tones, tone motifs, and word length motifs as well as rimes and rime motifs. Support vector machines and random forests were used to establish the text classification model for authorship attribution. From the results of the experiments, we conclude that the combination of bigrams of rimes, word-final rimes, and segment-final rimes can discriminate the texts from different authors effectively when using random forests to establish the classification model. This robust approach can in principle be applied to other languages with established phonological inventory of onset and rimes.

Type
Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Robust stylometric analysis and author attribution based on tones and rimes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Robust stylometric analysis and author attribution based on tones and rimes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Robust stylometric analysis and author attribution based on tones and rimes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *