Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-05T13:29:49.128Z Has data issue: false hasContentIssue false

Newton polygons and gevrey indices for linear partial differential operators

Published online by Cambridge University Press:  22 January 2016

Masatake Miyake
Affiliation:
Department of Mathematics, College of General Education, Nagoya University, Nagoya 464-01, Japan
Yoshiaki Hashimoto
Affiliation:
Department of Mathematics, College of General Education, Nagoya City University, Nagoya 467, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is a continuation of Miyake [7] by the first named author. We shall study the unique solvability of an integro-differential equation in the category of formal or convergent power series with Gevrey estimate for the coefficients, and our results give some analogue in partial differential equations to Ramis [10, 11] in ordinary differential equations.

In the study of analytic ordinary differential equations, the notion of irregularity was first introduced by Malgrange [3] as a difference of indices of a differential operator in the categories of formal power series and convergent power series. After that, Ramis extended his theory to the category of formal or convergent power series with Gevrey estimate for the coefficients. In these studies, Ramis revealed a significant meaning of a Newton polygon associated with a differential operator.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1992

References

[1] Gérard, R. and Tahara, H., Maillet’s type theorems for non linear singular partial differential equations, Preprint.Google Scholar
[2] Kitagawa, K., L’irrégularité en un point singulier d’un système d’équations différentielles linéaies d’ordre 1, J. Math. Kyoto Univ., 23 (1983), 427440.Google Scholar
[3] Malgrange, B., Sur les points singuliers des équations différentielles linéaires, En-seign. Math., 20 (1970), 147176.Google Scholar
[4] Malgrange, B., Sur le théorème de Maillet, Asymptotic analysis, 2 (1989), 14.CrossRefGoogle Scholar
[5] Miyake, M., On cauchy-Kowalewski’s theorem for general system, Publ. Res. Inst. Math. Sci., 15 (1979), 315337.CrossRefGoogle Scholar
[6] Miyake, M., Global and local Goursat problems in a class of holomorphic or partially holomorphic functions, J. Differential Equations, 39 (1981), 445463.CrossRefGoogle Scholar
[7] Miyake, M., Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations, J. Math. Soc. Japan, 43 (1991), 305330.CrossRefGoogle Scholar
[8] Miyake, M., An operator and its nature in Gevrey functions, Tsukuba J. Math., 17, No.1 (1993), to appear.Google Scholar
[9] Moser, J., The order of singularity in Fuchs’s theory, Math. Z., 72 (1960), 379398.Google Scholar
[10] Ramis, J. P., Dévissage Gevrey, Astérisque, 59/60 (1978), 173204.Google Scholar
[11] Ramis, J. P., “Théorèmes d’indices Gevrey pour les équations différentielles ordinaires,” Mem. Amer. Math. Soc, No. 296, 48, 1984.Google Scholar
[12] Wagschal, C. Une generalization du problème de Goursat pour des systèmes d’équations intégro-différentielles holomorphes ou partiellement holomorphes, J. Math. Pures Appl., 53 (1974), 99132.Google Scholar
[13] Yonemura, A., Newton polygons and formal Gevrey classes, Publ. Res. Inst. Math. Sci., 26 (1990), 197204.CrossRefGoogle Scholar