Hostname: page-component-7d8f8d645b-xs5cw Total loading time: 0 Render date: 2023-05-30T02:51:12.275Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Hartogs Type Theorems for CR L2 Functions on Coverings of Strongly Pseudoconvex Manifolds

Published online by Cambridge University Press:  11 January 2016

Alexander Brudnyi*
Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove an analog of the classical Hartogs extension theorem for CR L2 functions defined on boundaries of certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a question formulated in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds.


Research Article
Copyright © Editorial Board of Nagoya Mathematical Journal 2008


[Bo] Bochner, S., Analytic and meromorphic continuation by means of Green’s formula, Ann. of Math., 44 (1943), 652673.CrossRefGoogle Scholar
[Br1] Brudnyi, A., Representation of holomorphic functions on coverings of pseudoconvex domains in Stein manifolds via integral formulas on these domains, J. Funct. Anal., 231 (2006), 418437.CrossRefGoogle Scholar
[Br2] Brudnyi, A., Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds, Compositio Math., 142 (2006), 10181038.CrossRefGoogle Scholar
[Br3] Brudnyi, A., Hartogs type theorems on coverings of Stein manifolds, Internat. J. Math., 17 (2006), no. 3, 339349.CrossRefGoogle Scholar
[Br4] Brudnyi, A., On holomorphic L2-functions on coverings of strongly pseudoconvex manifolds, Publications of RIMS, Kyoto University, 43 (2007), no. 4, 963976.Google Scholar
[C] Cartan, H., Sur les fonctions de plusieurs variables complexes. Les espaces analytiques, Proc. Intern. Congress Mathematicians Edinbourgh 1958, Cambridge Univ. Press, 1960, pp. 3352.Google Scholar
[D] Demailly, J.-P., Estimations L2 pour l’opèrateur ∂ d’un fibre vectoriel holomorphe semi-positif au-dessus d’une variètè kahlèrienne complète, Ann. Sci. Ecole Norm. Sup. (4), 15 (3) (1982), 457511.CrossRefGoogle Scholar
[Fe] Federer, H., Geometric measure theory, Springer-Verlag, New York, 1969.Google Scholar
[GHS] Gromov, M., Henkin, G. and Shubin, M., Holomorphic L2 functions on coverings of pseudoconvex manifolds, GAFA, Vol. 8 (1998), 552585.Google Scholar
[GM] Grant, C. and Milman, P., Metrics for singular analytic spaces, Pacific J. Math., 168 (1995), no. 1, 61156.CrossRefGoogle Scholar
[GR] Grauert, H. and Remmert, R., Theorie der Steinschen Räume, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
[HL] Harvey, R. and Lawson, H. B., On boundaries of complex analytic varieties, I, Ann. of Math. (2), 102 (1975), no. 2, 223290.CrossRefGoogle Scholar
[H] Henkin, G., The method of integral representations in complex analysis, Several complex variables, I, Introduction to complex analysis, A translation of Sovre-mennye problemy matematiki. Fundamentalńye napravleniya, Tom 7, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekn. Inform., Moscow 1985. Encyclopaedia of Mathematical Sciences, 7, Springer-Verlag, Berlin, 1990.Google Scholar
[KR] Kohn, J. J. and Rossi, H., On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2), 81 (1965), 451472.CrossRefGoogle Scholar
[L] Làrusson, F., An extension theorem for holomorphic functions of slow growth on covering spaces of projective manifolds, J. Geom. Anal., 5 (1995), no. 2, 281291.CrossRefGoogle Scholar
[M] McShane, E., Extension of range functions, Bull. Amer. Math. Soc., 40 (1934), no. 12, 837842.CrossRefGoogle Scholar
[N] Narasimhan, R., Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82 (1960), no. 4, 917934.CrossRefGoogle Scholar
[O] Ohsawa, T., Complete Kähler manifolds and function theory of several complex variables, Sugaku Expositions, 1 (1) (1988), 7593.Google Scholar
[R] Remmert, R., Sur les espaces analytiques holomorphiquement sèparables et holo-morphiquement convexes, C. R. Acad. Sci. Paris, 243 (1956), 118121.Google Scholar