Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-18T04:40:21.871Z Has data issue: false hasContentIssue false

Families of abelian surfaces with real multiplication over Hilbert modular surfaces

Published online by Cambridge University Press:  22 January 2016

G. van der Geer
Affiliation:
University of Amsterdam, Kyoto University
K. Ueno
Affiliation:
University of Amsterdam, Kyoto University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[ 1 ] Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, 1975.Google Scholar
[ 2 ] Baily, W. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 442528.CrossRefGoogle Scholar
[ 3 ] Freitag, E. and Schneider, V., Bemerkung zu einem Satz von J. Igusa und W. Hammond, Math. Z., 102 (1967), 916.CrossRefGoogle Scholar
[ 4 ] Hammond, W., The modular groups of Hilbert and Siegel, Amer. J. Math., 88 (1966), 497516.Google Scholar
[ 5 ] Hammond, W., The two actions of Hilbert’s modular group, Amer. J. Math., 99 (1977), 389392.Google Scholar
[ 6 ] Hecke, E., Höhere Modulfunktionen und ihre Anwendung auf die Zahlentheorie, Math. Ann., 71 (1912), 137.Google Scholar
[ 7 ] Hirzebruch, F., Hilbert modular surfaces, Enseign. Math., 71 (1973), 183281.Google Scholar
[ 8 ] Hirzebruch, F. and Zagier, D., Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math., 36 (1976), 57113.Google Scholar
[ 9 ] Humbert, G., Sur les fonctions abéliennes singulières I—III, J. de Math., série 5, tome V (1899), 233350, tome VI (1900), 279386, tome VII (1901), 97123.Google Scholar
[10] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings I, Lect. Notes in Math. 339, Springer, Berlin-Heidelberg-New York, 1970.Google Scholar
[11] Mumford, D., An analytic construction of degenerating abelian varieties over complete rings, Comp. Math., 24 (1972), 239272.Google Scholar
[12] Mumford, D., Hirzebruch’s proportionality theorem in the non-compact case, Invent. Math., 42 (1977), 239272.CrossRefGoogle Scholar
[13] Namikawa, Y., A new compactification of the Siegel space and degeneration of abelian varieties I, II, Math. Ann., 221 (1976), 97141, 201241.Google Scholar
[14] Namikawa, Y., Toroidal degeneration of abelian varieties II. Math. Ann. 245 (1979), 11750.Google Scholar
[15] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 2059.Google Scholar
[16] Svarčman, O., Simple connectedness of the factor space of the Hilbert modular group (in Russian), Functional Anal. Appl., 8 (1974), 99100.Google Scholar