Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T22:50:20.618Z Has data issue: false hasContentIssue false

Deformations with constant Lê numbers and multiplicity of nonisolated hypersurface singularities

Published online by Cambridge University Press:  11 January 2016

Christophe Eyral
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland, eyralchr@yahoo.com
Maria Aparecida Soares Ruas
Affiliation:
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13566-590 São Carlos - SP, Brazil, maasruas@icmc.usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the possible jump of the order in an 1-parameter deformation family of (possibly nonisolated) hypersurface singularities, with constant Lê numbers, is controlled by the powers of the deformation parameter. In particular, this applies to families of aligned singularities with constant topological type—a class for which the Lê numbers are “almost” constant. In the special case of families with isolated singularities—a case for which the constancy of the Lê numbers is equivalent to the constancy of the Milnor number—the result was proved by Greuel, Plénat, and Trotman.

As an application, we prove equimultiplicity for new families of nonisolated hypersurface singularities with constant topological type, answering partially the Zariski multiplicity conjecture.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Abderrahmane, O. M., On the deformation with constant Milnor number and Newton polyhedron, preprint, http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/ould/dahm.pdf (accessed 21 November 2004).Google Scholar
[2] de Bobadilla, J. Fernández and Gaffney, T., The Lê numbers of the square of a function and their applications, J. Lond. Math. Soc. (2) 77 (2008), 545557. MR 2418291. DOI 10.1112/jlms/jdm101.Google Scholar
[3] Eyral, C., Zariski's multiplicity question and aligned singularities, C. R. Math. Acad. Sci. Paris 342 (2006), 183186. MR 2198190. DOI 10.1016/j.crma.2005.12.008.Google Scholar
[4] Eyral, C., Zariski's multiplicity question—A survey, New Zealand J. Math. 36 (2007), 253276. MR 2476643.Google Scholar
[5] Fulton, W., Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984. MR 0732620. DOI 10.1007/978-3-662-02421-8.Google Scholar
[6] Greuel, G.-M., Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscripta Math. 56 (1986), 159166. MR 0850367. DOI 10.1007/BF01172153.Google Scholar
[7] Greuel, G.-M. and Pfister, G., Advances and improvements in the theory of standard bases and syzygies, Arch. Math. (Basel) 66 (1996), 163176. MR 1367159. DOI 10.1007/BF01273348.CrossRefGoogle Scholar
[8] Hamm, H. A. and Tráng, Lê Dũng, Un théorème de Zariski du type de Lefschetz, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 317355. MR 0401755.Google Scholar
[9] Kouchnirenko, A. G., Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 131. MR 0419433.Google Scholar
[10] Tráng, Lê Dũng, “Topologie des singularités des hypersurfaces complexes” in Singularités à Cargèse (Cargèse, 1972), Astérisque 7/8, Soc. Math. France, Paris, 1973, 171182. MR 0361147.Google Scholar
[11] Tráng, Lê Dũng and Ramanujam, C. P., The invariance of Milnor number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 6778. MR 0399088.Google Scholar
[12] Tráng, Lê Dũng and Saito, K., La constance du nombre de Milnor donne des bonnes stratifications, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 793795. MR 0350063. Google Scholar
[13] Massey, D. B., Lê cycles and hypersurface singularities, Lecture Notes in Math. 1615 , Springer, Berlin, 1995. MR 1441075.Google Scholar
[14] Massey, D. B., Numerical Control over Complex Analytic Singularities, Mem. Amer. Math. Soc. 163 (2003), no. 778. MR 1962934. DOI 10.1090/memo/0778.Google Scholar
[15] O'Shea, D., Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple, Proc. Amer. Math. Soc. 101 (1987), 260262. MR 0902538. DOI 10.2307/2045992.Google Scholar
[16] Plénat, C. and Trotman, D., On the multiplicities of families of complex hypersurface-germs with constant Milnor number, Internat. J. Math. 24 (2013), article no. 1350021. MR 3048008. DOI 10.1142/S0129167X13500213.Google Scholar
[17] Saia, M. J. and Tomazella, J. N., Deformations with constant Milnor number and multiplicity of complex hypersurfaces, Glasg. Math. J. 46 (2004), 121130. MR 2034839. DOI 10.1017/S0017089503001599.CrossRefGoogle Scholar
[18] Teissier, B., “Cycles évanescents, sections planes et conditions de Whitney” in Singularités à Cargése (Cargése, 1972), Astérisque 7/8, Soc. Math. France, Paris, 1973, 285362. MR 0374482.Google Scholar
[19] Trotman, D., Partial results on the topological invariance of the multiplicity of a complex hypersurface, lecture, Université Paris 7, France, 1977.Google Scholar
[20] Zariski, O., Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481491. MR 0277533.Google Scholar
[21] Zariski, O., On the topology of algebroid singularities, Amer. J. Math. 54 (1932), 453465. MR 1507926. DOI 10.2307/2370887.Google Scholar