Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T06:30:54.594Z Has data issue: false hasContentIssue false

ZnO-CdZnS Core-Shell Nanocable Arrays for Highly Efficient Photoelectrochemical Hydrogen Generation

Published online by Cambridge University Press:  01 February 2011

Yoon Myung
Affiliation:
qoouni@korea.ac.kr, Korea University, Material Chemistry, Jochiwon, Korea, Republic of
Dong Myung Jang
Affiliation:
wavejd@naver.com, Korea University, Jochiwon, Korea, Republic of
Yong Jei Sohn
Affiliation:
nistelrooy@naver.com, Korea University, Jochiwon, Korea, Republic of
Tae Kwang Sung
Affiliation:
stk818@nate.com, Korea University, Jochiwon, Korea, Republic of
Gyeong Bok Jung
Affiliation:
marie-jung@korea.ac.kr, Korea University, Jochiwon, Korea, Republic of
Yong Jae Cho
Affiliation:
valunus@nate.com, Korea University, Jochiwon, Korea, Republic of
Han Sung Kim
Affiliation:
rhymester@korea.ac.kr, Korea University, Material Chemistry, Jochiwon, Korea, Republic of
Jeunghee Park
Affiliation:
parkjh@korea.ac.kr, Korea University, Material Chemistry, Jochiwon, Korea, Republic of
Get access

Abstract

High-density TiO2-CdS and ZnO-CdS core-shell nanocable arrays were synthesized on large-area Ti substrates. The CdS layers were deposited on the pre-grown vertically-aligned TiO2 (rutile) and ZnO nanowire arrays, with a controlled thickness (10~50 nm), using the vapor transport method. The ZnO-CdS nanocables consisted of single-crystalline wurtzite CdS shells whose [001] direction was aligned along the [001] wire axis of the wurtzite ZnO core, which is distinctive from the polycrystalline shell of the TiO2-CdS nanocables. We fabricated the photoelectrochemical cell using the ZnO-CdS photoelectrode exhibits much more efficient hydrogen generation than that using the TiO2-CdS one.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fujishima, A.; Honda, K.; Nature 1972, 238, 3738.10.1038/238037a0Google Scholar
2 Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P.; Nat. Mater. 2005, 4, 455459.Google Scholar
3 Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2008, 2, 11131116.Google Scholar
4 Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. J.; Mater. Chem. 2009, 19, 59455951.Google Scholar
5 Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V.; J. Am. Chem. Soc. 2008, 130, 40074015.Google Scholar
6 Seabold, J. A.; Shankar, K.; Wilke, R. H. T.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Choi, K. –S;. Chem. Mater. 2008, 20, 52665273.Google Scholar
7 Wang, K.; Chen, J.; Zhou, W.; Zhang, Y.; Yan, Y.; Pern, J.; Mascarenhas, Adv. Mater. 2008, 20, 32483253.10.1002/adma.200800145Google Scholar