Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T16:05:05.984Z Has data issue: false hasContentIssue false

ZnO-based MESFET Devices

Published online by Cambridge University Press:  31 January 2011

Marius Grundmann
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Heiko Frenzel
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Alexander Lajn
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Holger von Wenckstern
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Friedrich Schein
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Michael Lorenz
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Get access

Abstract

We present transistors and inverters based on the MESFET principle. The channel consists of thin ZnO:Mg thin films on sapphire, deposited with pulsed laser deposition. The ohmic source and drain contacts are formed with sputtered gold. The Schottky gate electrode is formed by metal oxides providing high barrier height and a reliable contact. The voltage swing of our inverters is superior to any other reported oxide devices. Annealing studies show that our devices withstand temperatures up to 150°C, partly improving during annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huang, J.-J., Liu, C.-J., Lin, H.-C., Tsai, C.-J., Chen, Y.-P., Hu, G.-R., and Lee, C.-C., Journal of Physics D: Applied Physics 41, 245502 (2008).10.1088/0022-3727/41/24/245502Google Scholar
[2] Lee, H., Yoo, G., Yoo, J.-S. and Kanicki, J., Journal of Applied Physics 105, 124522 (2009)10.1063/1.3153968Google Scholar
[3] Frenzel, H., Lajn, A., Brandt, M., Wenckstern, H. von, Biehne, G., Hochmuth, H., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 92, 192108 (2008).10.1063/1.2926684Google Scholar
[4] Frenzel, H., Lajn, A., Wenckstern, H. von, Biehne, G., Hochmuth, H. and Grundmann, M., Thin Solid Films 518, 1119 (2009).10.1016/j.tsf.2009.02.149Google Scholar
[5] Frenzel, H., Lorenz, M., Lajn, A., Wenckstern, H. von, Biehne, G., Hochmuth, H., Grundmann, M., Appl. Phys. Lett. 95, 153503 (2009).10.1063/1.3242414Google Scholar
[6] Lajn, A., Wenckstern, H. von, Zhang, Z., Czekalla, C., Biehne, G., Lenzner, J., Hochmuth, H., Lorenz, M., Grundmann, M., Wickert, S., Vogt, C., and Denecke, R., J. Vac. Sci. Technol. B 27, 1769 (2009).10.1116/1.3086718Google Scholar
[7] Grundmann, M., Frenzel, H., Lajn, A., Lorenz, M., Schein, F., Wenckstern, H. von, phys. stat. sol. (b) (2010), in pressGoogle Scholar
[8] Jit, S., Pandey, P. K. and Tiwari, P. K., Solid-State Electronics 53, 57 (2009).10.1016/j.sse.2008.09.013Google Scholar
[9] Presley, R.E., Hong, D., Chiang, H.Q., Hung, C.M., Hoffman, R.L., and J.F. Wager, Sol. Stat. Electron. 50, 500 (2006).Google Scholar
[10] Ofuji, M., Abe, K., Shimizu, H., Kaji, N., Hayashi, R., Sano, M., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., IEEE Electr. Dev. Lett. 28, 273 (2007).10.1109/LED.2007.893223Google Scholar
[11] Sun, J., Mourey, D.A., Zhao, D., and Jackson, T.N., J. Electr. Mat. 37, 755 (2008).10.1007/s11664-007-0362-7Google Scholar
[12] Heineck, D.P., McFarlane, B.R., and Wager, J.F., IEEE Electr. Dev. Lett. 30, 514 (2009).10.1109/LED.2009.2017496Google Scholar
[13] Na, J.H., Kitamura, M., and Arakawa, Y., Appl. Phys. Lett. 93, 213505 (2008).10.1063/1.3039779Google Scholar