Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T18:49:55.724Z Has data issue: false hasContentIssue false

ZnO/Al2O3 Core-shell Nanorod Arrays: Processing, Structural Characterization, and Luminescent Property

Published online by Cambridge University Press:  01 February 2011

Cheng-Ying Chen
Affiliation:
d94941017@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, United States
Chin-An Lin
Affiliation:
r95941090@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
Miin-Jang Chen
Affiliation:
mjchen@ntu.edu.tw, National Taiwan University, Department of Materials Science and Engineering, Taipei, Taiwan, Province of China
Gong-Ru Lin
Affiliation:
grlin@cc.ee.ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
Jr-Hau He
Affiliation:
jhhe@cc.ee.ntu.edu.tw, Institute of Photonics and Optoelectronics & Department of Electrical Engineering National Taiwan University, Taipei, Taiwan, Province of China
Get access

Abstract

We reported the aqueous chemical method to fabricate the well-aligned ZnO/Al2O3 core-shell nanorod arrays (NRAs). The shell is composed of α-Al2O3 nanocrystals in amorphous Al2O3 layers. The photoluminescence (PL) measurements showed that the enhancement of near-band-edge emission in ZnO NRAs arrays due to the addition of Al2O3 shell was observed. The Al2O3 shell layer resulting in flatband effect near ZnO surface leads to a stronger overlap of the wavefunctions of electrons and holes in the ZnO core, further enhancing the NBE emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, D. H., Beyer, A., Völkel, B., Gölzhäuser, A., Schlenker, E., Bakin, A. and Waag, A., Appl. Phys. Lett. 91 253126 (2007)Google Scholar
2. Appell, D., Nature (London) 419, 553 (2002)Google Scholar
3. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. and Lieber, C. M., 2001 Nature (London) 409, 66 Google Scholar
4. He, J. H. and Ho, C. H., Appl. Phys. Lett. 91 233105 (2007)Google Scholar
5. He, J. H., Hsin, C. L., Liu, J., Chen, L. J. and Wang, Z. L., Adv. Mater. 19 781 (2007)Google Scholar
6. He, J. H., Lin, Y. H., McConney, M. E., Tsukruk, V. V., Wang, Z. L. and Bao, G., J. Appl. Phys. 102, 084303 (2007)Google Scholar
7. Yi, G., Wang, C. and Park, W. I., Semicond. Sci. Technol. 20 S22 (2005)Google Scholar
8. Huo, K. F., Hu, Y. M., Fu, J. J., Wang, X. B., Chu, P. K., Hu, Z. and Chen, Y., J. Phys. Chem. C. 111 5876 (2007)Google Scholar
9. Wang, X. D., Song, J. H., Liu, J. and Wang, Z. L., Science 316 102 (2007)Google Scholar
10. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D., Nat. Mater. 4 455 (2005)Google Scholar
11. Huang, M. H., Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., Kind, H., Weber, E., Russo, R. and Yang, P. D., Science 292 1897 (2001)Google Scholar
12. He, J. H., Hsu, J. H., Wang, C. W., Lin, H. N., Chen, L. J. and Wang, Z. L., J. Phys. Chem. B 110 50 (2006)Google Scholar
13. Hsu, C., Lin, Y., Chang, S., Lin, T., Tsai, S. and Chen, I., Chem. Phys. Lett. 411 221 (2005)Google Scholar
14. Li, S. Z., Gan, C. L., Cai, H., Yuan, C. L., Guo, J., Lee, P. S. and Ma, J., Appl. Phys. Lett. 90 263106 (2007)Google Scholar
15. Park, W. I., Yoo, J., Kim, D. W., Yi, G. C. and Kim, M., J. Phys. Chem. B 110 1516 (2006)Google Scholar
16. Park, Y. H., Shin, Y. H., Noh, S. J., Kim, Y., Lee, S. S., Kim, C. G., An, K. S. and Park, C. Y., Appl. Phys. Lett. 91 012102 (2007)Google Scholar
17. Richters, J. P., Voss, T., Kim, D. S., Scholz, R. and Zacharias, M., Nanotechnology 19 305202 (2008)Google Scholar
18. Zhang, X. H., Domercq, B., Wang, X. D., Yoo, S., Kondo, T., Wang, Z. L. and Kippelen, B., Org. Electron. 8 718 (2007)Google Scholar
19. Djurisic, A. B. and Leung, Y. H., Small 2 944 (2006)Google Scholar
20. Shalish, I., Temkin, H. and Narayanamurti, V., Phys. Rev. B 69 245401 (2004)Google Scholar
21. Schoenmakers, G. H., Vanmaekelbergh, D., and Kelly, J. J., J. Phys. Chem. 100 3215 (1996)Google Scholar
22. Lin, Y. J. and Tsai, C. L., 2006 J. Appl. Phys. 100 113721 Google Scholar
23. Pankove, J. I., Optical processes in semiconductors (Prentice-Hall) p.166 (1971)Google Scholar
24. Fouquet, J. E. and Siegman, A. E., Appl. Phys. Lett. 46 280 (1985)Google Scholar
25. Feng, Z. C., Mascarenhas, A. and Choyke, W. J., J. Lumin. 35 329 (1986)Google Scholar
26. Yang, C. L., Wang, J. N., Ge, W. K., Guo, L., Yang, S. H. and Shen, D. Z., J. Appl. Phys. 90 4489 (2001)Google Scholar