Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:51:20.597Z Has data issue: false hasContentIssue false

Zeolitic Materials As Organizing Media For Semiconductor-Based Artificial Photosynthetic Systems

Published online by Cambridge University Press:  15 February 2011

Yeong Il Kim
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Richard L. Riley
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Munir J. Huq
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Samer Salim
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Angie N. Le
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Thomas E. Mallouk
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
Get access

Abstract

Two photocatalytic systems consisting of spatially organized electron donor/photosensitizer/oxide semiconductor/catalyst assemblies are described. The first consists of an aluminosilicate zeolite (mordenite or zeolite L) containing Pt clusters, methylviologen, and titanium oxide within the linear channels, together with a size-excluded photosensitizer RuL32+ (L = 4, 4-dicarboxy-2, 2-bipyridine) adsorbed at the TiO2 surface. The kinetics of photochemical charge separation and hydrogen evolution in the presence of sacrificial electron donors are reported. In the second system, a layered oxide semiconductor, K4−xHxNb6O17·nH2O, replaces the zeolite/TiO2/MV2+ composite. Using adsorbed RuL3 and visible light excitation, this material decomposes acidic iodide solutions into H2 and I3 with a quantum efficiency of 0.3 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujishima, A.,Honda, K.,Nature(London)238,37(1972)CrossRefGoogle Scholar
[2] For reviews see Gratzel, M., Ed., Energy Resources through Photochemistry and Catalysis (Academic Press, New York, 1983); A. Heller, Acc.Chem.Res. 14,154(1981); M.S. Wrighton, Acc.Chem.Res.,12,303 (1979);A.J.Bard, Science, 207, 139(1980); J.R.Norris, D. Meisel, Eds., Photochemical. Energy Conversion (Elsevier Science Publishing, New York, 1989).Google Scholar
[3] Tufts, B.J., Abrahams, I.L., Santangelo, P.G., Ryba, G.N., Casagrande, L.G., Lewis, N.S., Nature, 326,861(1987); I.L. Abrahams, P.G. Santangelo, G.N. Ryba, B.J. Tufts, N.S. Lewis, New J. Chem.ll,157 (1987).156Google Scholar
[4] Liska, P.,Vlachapoulos, N.,Nazeeruddin, M.K.,Comte, P.,Gräzel, M.,J. Am.Chem.Soc.110,3686 (1988) and references therein; M.T.Spitler, M.Calvin, J.Chem.Phys.66,4294(1977).Google Scholar
(5) Komarov, V.S., Shirinskaya, L.P., Bokhan, N.P., Russ. J. Phys. Chem.50, 1478(1976).Google Scholar
[6] Bergeret, G., Gallezot, P., Imelik, B., J.Phys.Chem.85,411(1981); P. Gallezot, Catal.Rev.Sci.Eng.20,121(1979); N.C. Saha, E.E.Wolf, Appl.Catal.13,107(1984); M. Boudart, G. Meitzner, Springer Proc. Phys.2,217(1984); T.R.Felthouse, J.A.Murphy, J.Catal..29,411(1986).Google Scholar
[7] Persaud, L., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E., and White, J.M., Inorg. Chem.26,3825(1987).Google Scholar
[8] Brus, L.E., J.Chem. Phys.80,4403 (1984); Nouveau J.Chem.11,123 (1987).Google Scholar
[9] Yahia, H.,Phys.Rev.130,1711(1963); R.G.Breckenridge, W.R. Hosler Phys.Rev.91,793(1953); F.A.Grant, Rev.Mod.Phys.31,646(1953).CrossRefGoogle Scholar
[10] Dimitrijevic, N.M.,Savic, D.,Micic, O.I.,Nozik, A.J., J.Chem.Phys. 88,4278(1984); D.Duonghong, J.Ramsden, M.Grttzel, J.Am.Chem.Soc.104, 2977 (1982); A.Henglein, Ber.Buns.Phys.Chem.80, 241(1982).CrossRefGoogle Scholar
[11] Anpo, M.,Aikawa, N., Kubokawa, Y.,Che, M.,Louis, C.,Giamello, E.,J.Phys. Chem.89, 5017 (1985).Google Scholar
[12] Domen, K., Kudo, A., Shinozaki, A., Tanaka, A., Maruya, K., Onishi, T., J. Chem.Soc.Chem.Comm. 356(1986);1706(1986); A. Kudo, A. Tanaka, D. Domen, K. Maruya, K. Aika, T. Onishi, J.Catal., 111 67(1988); A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya, T. Onishi, J.Catal., 120f, 337 (1989); K. Sayama, A. Tanaka, K. Domen, K. Maruya, T. Onishi, J.Phys.Chem.. 95, 1345 (1991).Google Scholar
[13] Gasperin, M.,LeBihan, M.-T., J.Solid State Chem.33,83(1980);43., 346(1982).CrossRefGoogle Scholar
[14] Raveau, B.,Rev.Chim.Miner.21,391(1984).Google Scholar
[15] Fitzmaurice, D.,Frei, H., presented at the 14th DOE Solar Photochemistry Research Conference, Lake Harmony, PA, 1990.Google Scholar