Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T21:08:03.787Z Has data issue: false hasContentIssue false

(Y1−x)Ba2Cu3O6+δ (δ≤0.2): Consequences of Doping Tetragonal 123-Type to Induce Superconductivity

Published online by Cambridge University Press:  21 February 2011

John B. Parise
Affiliation:
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Experimental Station, P.O. Box 80356, Wilmington, DE 19880–0356
Pratibha L. Gai
Affiliation:
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Experimental Station, P.O. Box 80356, Wilmington, DE 19880–0356
M. K. Crawford
Affiliation:
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Experimental Station, P.O. Box 80356, Wilmington, DE 19880–0356
Eugene M. McCarron III
Affiliation:
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Experimental Station, P.O. Box 80356, Wilmington, DE 19880–0356
Get access

Abstract

Substitution of Ca(II) for Y(III) into tetragonal YBa2Cu3O6 has been achieved and a superconducting transition has been observed for a material of nominal composition (Y0.5Ca0.5) Ba2Cu3O6 (Tc (onset) ˜50K) [1]. Observations using high resolution electron microscopy show samples with x < 0.3 consist of a complex mixture, including (Y, Ca) Ba2Cu3O6+δ, YBa2Cu3O6+δ, and BaCuO2. Further, structural refinement using neutron diffraction data provide evidence of a solid solution limit at x ˜ 0.3. A direct analogy can be drawn between superconducting (Y1−xCax)Ba2Cu3O6 (0.1 < x < 0.3) and superconductors of the type (Y1−xCax)Pb2Sr2Cu3O8 and (La2−xM(II)x)CuO4. Substitution of the Ca(II) for Y(III) effectively increases the formal copper oxidation state. The refined structural model is fully consistent with partially oxidized CuO2 sheets separated by linear O-Cu(I)-O units.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCarron, E. M., et al., J. Solid State Chem., 78, 192 (1989).Google Scholar
2. Bednorz, J. G. and Muller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
3. Cava, R. J., et al., Phys. Rev. Lett. 58, 408 (1987).Google Scholar
4. Subramanian, M. A., et al., Science 240, 495 (1988).Google Scholar
5. Wu, M. K., et al., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
6. Farneth, W. E., et al., Solid State Commun. 66, 953 (1988).Google Scholar
7. Jorgensen, J. D., et al., Phys. Rev. B 38(16), 11337 (1988).Google Scholar
8. Zolliker, P., et al., preprint.Google Scholar
9. McCarron, E. M., et al., Industry-University Adv. Mat. Conference, Denver, 1989.Google Scholar
10. Cava, R. J., et al., Nature 336, 211 (1988).Google Scholar
11. Subramanian, M. A., et al, Physica C 157, 124 (1989).Google Scholar
12. Manthiram, A., et al., J. Solid State Chem. 73, 278 (1988)Google Scholar
13. Larson, A. C. and Dreele, R. B. Von, GSAS Manual, Los Alamos National Laboratory Report LAUR 86–748 (1988).Google Scholar
14. Parise, J. B. and McCarron, E. M., in preparation.Google Scholar
15. Bordet, P., et al., Nature 327, 687 (1987); A. Santoro, et al., Mat. Res. Bull. 22, 1007 (1987); J. S. Swinna and H. Steinfink, J. Mater. Res. 2, 424 (1987); C. C. Torardi, et al., Solid State Commun. 64, 497 (1987).Google Scholar
16. Tokura, Y., et al., Phys. Rev. B 38, 7150 (1988).Google Scholar
17. Zandbergen, H. W., et al., Nature 331, 18 (1988).Google Scholar
18. Kipka, R. and Mueller-Buschbaum, H., Z. Naturforschung B 32, 121 (1977).Google Scholar
19. Scott, H. G., J. Appl. Crystallogr. 16, 159 (1983).Google Scholar
20. Shannon, R. D., Acta Crystaiogr A 32, 751 (1976).Google Scholar
21. Cava, R. J., et al., Physica C 157, 272 (1989).Google Scholar