Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T21:44:36.023Z Has data issue: false hasContentIssue false

X-ray Analysis of Ni/Ti Multilayers

Published online by Cambridge University Press:  15 February 2011

J. Chaudhuri
Affiliation:
Mech. Eng. Dept., Wichita State University, Wichita, KS 67208.
S.M. Alyan
Affiliation:
Mech. Eng. Dept., Wichita State University, Wichita, KS 67208.
A.F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550.
Get access

Abstract

The structure, composition and strain in Ni/Ti multilayers are analyzed using x-ray diffraction theories. The repeat period of the multilayers used in this study ranges from 1.3 to 12.8 nm. The composition modulation is obtained by using a kinematical theory of x-ray diffraction. A sine wave for the shorter repeat period and a rectangular wave for the longer repeat period are predicted for the composition modulation. The strain within each atomic layer is found by iteratively fitting the experimental x-ray diffraction pattern with the simulated one from a dynamical theory of x-ray diffraction. The strain at the interface is tensile in Ni and compressive in Ti with a complete relaxation of the strain at a distance away from the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hove, M.A. and Tong, S.Y., eds., The Structure of Surfaces, Springer Series in Surface Science Vol. 2 (Springer, Berlin, 1985).Google Scholar
2 Chang, L. and Giessen, B., eds., Synthetic Modulated Structures (Academic Press, New York, 1985).Google Scholar
3 Dow, J. D., Schuller, I. K. and Hillard, J. E., eds., Interfaces. Superlattices and Thin Films, Mat. Res. Soc. Proc, Vol. 77 (1987).Google Scholar
4 Yang, W.M.C., Tsakalakos, T. and Hillard, J.E., J. Appl. Phys. 48 (1977) 876.Google Scholar
5 Chaudhuri, J., Alyan, S.M. and Jankowski, A.F., Thin Solid Films 219 (1992) 636.CrossRefGoogle Scholar
6 Chaudhuri, J., Gondhalekar, V. and Jankowski, A.F., J. Appl. Phys. 71 (8) (1992) 3816.CrossRefGoogle Scholar
7 Tsakalakos, T., Ph. D. Thesis, Northwestern University, 1977.Google Scholar
8 Fleming, R.M., Mcwhan, D.B., Gossard, A.C., Weigmann, W. and Logan, R.A., J. Appl. Phys. 51 (1) (1980) 357.Google Scholar
9 Takagi, S., Acta. Cryst. 15. (1962) 1311.Google Scholar
10 Taupin, D., Bull. Soc. Fran. Miner. Cryst. 87 (1964) 469.Google Scholar
11 Klar, B. and Rustichelli, F., Nuovo Cimento 13B (1973) 249.CrossRefGoogle Scholar
12 Wie, C.R., Tombrello, T.A. and Vreeland, T. Jr., J. Appl. Phys. 59 3743 (1986).Google Scholar
13 Jankowski, A.F. and Wall, M.A., Thin Solid Films 181 (1989) 305.Google Scholar
14 Stearns, M.B., Lee, C.H., Chang, C.H. and Petford-Long, A.K., in Hong, M., Wolf, S. and Gubser, D.C. (eds), Metallic Multilayers and Epitaxy. TMS-AIME, Warrendale, PA, 1988, p. 55.Google Scholar
15 Jankowski, A.F. and Wall, M.A., Mat. Res. Soc. Symp. Proc. 238 (1992) 297.CrossRefGoogle Scholar
16 Somekh, R.E., J. Vac. Sc. Tech. A2 (1984) 1285.Google Scholar
17 Jankowski, A.F., Thin Solid Films 220 (1992) 166.Google Scholar
18 Ibers, J.A. and Hamilton, W.C., eds., International Tables for X-ray Crystallography Vol. IV (Kynoch, Birmingham, 1974).Google Scholar