Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T18:08:49.740Z Has data issue: false hasContentIssue false

X-Ray Absorption Studies of Ti/Polymer and Cr/Polymer Interfaces

Published online by Cambridge University Press:  15 February 2011

R. L. Opila
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
K. Konstadinidis
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A. O. Ibidunni
Affiliation:
AT&T Bell Laboratories, 1600 Osgood Street, North Andover, MA 01845
A. J. Davenport
Affiliation:
AT&T Bell Laboratories, 1600 Osgood Street, North Andover, MA 01845
H. S. Isaacs
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

The interface formed between metals, Ti and Cr, and polymers, epoxy and triazine, have been studied, nondestructively, using x-ray absorption spectroscopy. The metals were sputtered onto the polymer surfaces. Titanium reacts extensively, up to Ti thicknesses of 100 Å while Cr remains primarily metallic. In situ heating at 200°C increases the extent of reaction for both metals. Heating has a greater effect on metal/epoxy interfaces than metal/triazine. Titanium and Cr were ion implanted into the polymer in order to determine the interactions of isolated metal atoms with the polymer. Titanium and Cr appear to form oxides as the final reaction product, and the Ti is tetrahedrally coordinated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Konstadinidis, K., Opila, R. L., Miller, A. C., Taylor, J. A., J. Adhesion, In press.Google Scholar
2. Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., Legoues, F. K., and Silverman, B. D., J. Vac. Sci. Technol. A3, 739 (1985).CrossRefGoogle Scholar
3. Haight, R., White, R. C., Silverman, B. D., and Ho, P. S., J. Vac. Sci. Technol. A6, 2188 (1988).Google Scholar
4. Bartha, J. W., Hahn, P. O., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol. A3, 1390 (1985).Google Scholar
5. Hahn, P. O., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A2, 756 (1984).Google Scholar
6. Hahn, P. O., Rubloff, G. W., Bartha, J. W., Legoues, F., Tromp, R., Ho, P. S., Mat. Res. Soc. Symp. Proc., 40, Materials Research Society, p. 251 (1985).Google Scholar
7. M.Tromp, R., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol. A3, 782 (1985).Google Scholar
8. Silverman, B. D., Sanda, P. N., and Ho, P. S., J. Polym. Sci., 23, 2857 (1985).Google Scholar
9. Opila, R. L., Masaitis, R. L., Ibidunni, A. O., Davenport, A. J., Isaacs, H. S., and Taylor, J. A., submitted to J. Electrochem. Soc.Google Scholar
10. Bianconi, A., Fritsch, E., Calas, G., and Petiau, J., Phys. Rev. B32, 4292 (1985).Google Scholar
11. Wong, J., Lytle, F. W., Messmer, R. P., and Maylotte, D. H., Phys. Rev., B30, 5596 (1984).Google Scholar
12. Greegor, R. B., Lytle, F. W., Sandstrom, D. R., Wong, J., and Schulz, P., J. Non-Cryst. Solids, 55, 27 (1983).Google Scholar
13. Kutzler, F. W., Natoli, C. R., Misemer, D. K., Doniach, S., and Hodgson, K. O., J. Chem. Phys., 73, 3274 (1980).Google Scholar