Hostname: page-component-788cddb947-rnj55 Total loading time: 0 Render date: 2024-10-13T23:43:44.608Z Has data issue: false hasContentIssue false

Wide Bandgap Semiconductors for Cold Cathodes: A Theoretical Analysis

Published online by Cambridge University Press:  10 February 2011

Peter Lerner
Affiliation:
Penn State University, Department of Physics, University Park, PA 16802
P. H. Cutler
Affiliation:
Penn State University, Department of Physics, University Park, PA 16802
N. M. Miskovsky
Affiliation:
Penn State University, Department of Physics, University Park, PA 16802
Get access

Abstract

In this paper we describe the field emission from wide band-gap semiconductor thin film electron sources as a three-step process. Internal field emission is the mechanism for electron injection at the metal-semiconductor cathode interface. Under an internal field, electrons injected into the conduction band can propagate quasi-ballistically through the thin semiconductor film. At the vacuum interface, they are field emitted across a PEA or NEA surface. Consistent with the electron injection mechanism we have done molecular dynamics simulations for GaN films with an initial energy distribution corresponding to a Fowler-Nordheim (FN) spectrum. Results demonstrate quasi-ballistic propagation and approximate preservation of the FN energy distribution. Furthermore, high levels of n-doping in GaN (∼ 1017cm−3) do not inhibit transport in thin films (<0.1 μm).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pryor, R. W., Mat. Res. Soc. Proc, 416, 425 (1996).Google Scholar
[2] Zhimov, V. V., Wojak, G. J., Choi, W. B., Cuomo, J. J., Hren, J. J., NCSU preprint (1996).Google Scholar
[3] Endo, M., Nakane, H., Adachi, H., J. Vac. Sci. Technol. B14, 2114 (1996).Google Scholar
[4] Popovici, G., Prelas, M. A., in: Prelas, M. A., Gielisse, P., Popovici, G., Spitsyn, B. V., Stacy, T. (eds.) Wide band gap electronic materials, (Kluwer, Dordrecht, 1995), p.l.Google Scholar
[5] Geis, M. W., Twichell, J. W., and Lyszczarz, T. M., J. Vac. Sci. Technol. B 14, 2060 (1996).Google Scholar
[6] Lerner, P., Cutler, P. H., and Miskovsky, N.M., submitted to JVST B (Nov. 1996)Google Scholar
[7] Sze, S. M., Physics of Semiconductor Electronic Devices, (John Wiley and Sons, New York, 1981).Google Scholar
[8] Okano, K., Koizumi, S., Ravi, S., Silva, P. and Amaratunga, G.A., Nature 381, 140(1996).Google Scholar
[9] Lerner, P., Cutler, P. H. and Miskovsky, N. M., Journ. de Physique (in press).Google Scholar
[10] Cutler, P. H., Huang, Z.-H., Miskovsky, N. M., Ambrosio, P. D’ and Chung, M., J. Vac. Sci. Technol. B14, 2020(1996).Google Scholar
[11] Modinos, A., Field, Thermionic and Secondary Electron Emission Spectroscopy, (Plenum, New York, 1983).Google Scholar
[12] Fitting, H. J. and Van Czarnovski, A., Phys. Stat. Sol. A 93, 385(1986).Google Scholar