Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:05:23.830Z Has data issue: false hasContentIssue false

Well-Resolved Band-Edge Photoluminescence from Strained Si1–xGex Layers Grown by Rapid Thermal Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

J. C. Sturm
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, NJ 08544
P. V. Schwartz
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, NJ 08544
H. Manoharan
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, NJ 08544
Q. Mi
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, NJ 08544
L. C. Lenchyshyn
Affiliation:
Department of Physics, Simon Fraser University Burnaby, BC, V5A 1S6, Canada
M. L. W. Thewalt
Affiliation:
Department of Physics, Simon Fraser University Burnaby, BC, V5A 1S6, Canada
N. L. Rowell
Affiliation:
National Research Council, Ottawa, K1A OR6, Canada
J. -P. Noël
Affiliation:
National Research Council, Ottawa, K1A OR6, Canada
D. C. Houghton
Affiliation:
National Research Council, Ottawa, K1A OR6, Canada
Get access

Abstract

Well resolved band-edge luminescence of excitons in silicon-germanium alloy strained layers, quantum wells, and superlattices has been observed in films grown by Rapid Thermal Chemical Vapor Deposition. The signal is due to bound excitons at low temperatures and free excitons at higher temperatures, and has a strong no-phonon signal which is caused by alloy scattering. Bandgaps inferred from photoluminescence agree well with those measured by absorption spectroscopy, inferring that a no-phonon process dominates the band-edge absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noël, J -P., Rowell, N. L., Houghton, D. C., and Perovic, D. D., Appl. Phys. Lett. 57, 1037 (1990).Google Scholar
2. Gnutzmann, U. and Clausecker, K., Appl. Phys. 3, 9 (1974).Google Scholar
3. Satpathy, S., Martin, R. M., and Van de Walle, C. G., Phys. Rev. B38, 13237 (1988).Google Scholar
4. Okumura, H., Miki, K., Misawa, S., Sakamoto, K., Sakamoto, T., and Yoshida, S., Jpn. J. Appl. Phys. 28, L1893 (1989).Google Scholar
5. Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).CrossRefGoogle Scholar
6. Schmid, U., Christensen, N. E., and Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).Google Scholar
7. Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett. 47, 721 (1985).Google Scholar
8. Sturm, J. C., Garone, P. M., and Schwartz, P. V., J. Appl. Phys. 69, 542 (1991).CrossRefGoogle Scholar
9. Sturm, J. C., Schwartz, P. V., Prinz, E. J., and Manoharan, H., J. Vac. Sci. Tech., to be published July 1991.Google Scholar
10. Weber, J. and Alonso, M. I., Phys. Rev. B40, 5683 (1989).Google Scholar
11. Sturm, J. C. and Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L., Noel, J -P, and Houghton, D. C., Phys. Rev. Lett. 66, 1362 (1991).Google Scholar
12. Terashima, K., Tajima, M., and Tatsumi, T., Appl. Phys. Lett. 57, 1925 (1990).CrossRefGoogle Scholar
13. Pikhtin, A. N., Fiz. Tech. Poloprovodn 11, 425 (1977). [Sov. Phys. Semicon-duct. 11, 245 (1977)].Google Scholar
14. Lang, D. V., People, R., Bean, J. C., and Sergent, A. M., Appl. Phys. Lett. 47, 1333 (1985).Google Scholar
15. Braunstein, R., Moore, A. R., Herman, F., Phys. Rev. 109, 695 (1958).CrossRefGoogle Scholar
16. People, R., IEEE J. Quant. Elee QE- 22, 1696 (1986).CrossRefGoogle Scholar
17. Van de Walle, C. G. and Martin, R. M., Phys Rev. B. 34, 5621 (1986).CrossRefGoogle Scholar
18. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54 2441 (1985).Google Scholar
19. Glaser, E., Trombetta, J. M., Kennedy, T. A., Prokeš, S. M., Glembocki, O. J., Wang, K. L., and Chern, C. H., Phys. Rev. Lett. 65, 1247 (1990).CrossRefGoogle Scholar