Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T14:39:56.607Z Has data issue: false hasContentIssue false

Weibull Modulus of Toughened Ceramics

Published online by Cambridge University Press:  25 February 2011

Kevin Kendall
Affiliation:
ICI New Science Group, P.O.Box 11 The Heath, Runcorn, Cheshire, UK
N. McN Alford
Affiliation:
ICI New Science Group, P.O.Box 11 The Heath, Runcorn, Cheshire, UK
J. D Birchall
Affiliation:
ICI New Science Group, P.O.Box 11 The Heath, Runcorn, Cheshire, UK
Get access

Abstract

The influence of toughness on the Weibull modulus of ceramics is discussed. It is shown that an increase in toughness does not give a higher Weibull modulus if the ceramic is truly brittle, following the Griffith criterion of fracture. However, R curve behaviour, such as that shown by tetragonal zirconia, by Dugdale material, or by fibrous ceramic composites, leads to an improved Weibull modulus. Theoretical argument and experimental results support these conclusions.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becher, P. F. and Wei, G. C., J. Am. Cerain. Soc. 67, C-267–69 (1984)Google Scholar
2. Lamicq, P. J., Bernhart, G. A., Dauchier, M. M. and Mace, J. G., Am. Cerain. Soc. Bull 65, 336 (1986)Google Scholar
3. Swain, M. V. and Hannink, R. J. H. Advances in Ceramics 12 (eds. Claussen, , Ruhle, and Heuer, ) (Am. Cerain. Soc. 1984) p 225 Google Scholar
4. Hartsock, D. L. and McLean, A. F. Am.Ceram. Soc. Bull. 63, 266 (1984)Google Scholar
5. Kendall, K., Alford, N. McN., Tan, S. R. and Birchall, J. D., J. Materials Rem. 1, 120 (1986)Google Scholar
6. Griffith, A. A., Phil. Trans. R. Soc. Lond. A221, 163 (1920)Google Scholar
7. Dugdale, D. S., J Mech. Phys. Solids, 8, 100 (1960)Google Scholar
8. Sack, R. A., Proc. Phys. Soc. 58, 729 (1946)Google Scholar
9. Ritter, J. E. and Davidge, R. W., J. Am. Ceram. Soc. 67, 432 (1984)Google Scholar
10. Waihull, W., J. Appl. Mech. 18, 293 (1951)Google Scholar
11. Kendall, K., Alford, N. McN. and Birchall, J. D., Inst. Ceram. Proc. in press.Google Scholar
12. Burdekin, F. J. and Stone, D. E. W., J. Strain Analysis 1, 1145 (1966)CrossRefGoogle Scholar
13. Haymmi, R., Ueno, K., Kondo, I. and Toibana, Y., Conference on Tailoring Multiphase and Composite Ceramics, Penn. State University July 1985.Google Scholar
14. Larsen, D. C. and Adams, J. W. Proceedings of the 22nd Department of Energy ATD Contractors Co-ordination Meeting, (Society of Automotive Engineers, Warrendale 1985) p. 399 Google Scholar
15. Rose, L. R. F., Int. J. Fracture 18, 135 (1982); J. Mech. Phys. Solids, in press (1986)Google Scholar
16. McCartney, L. N., Proc. R. Soc. Lond. 1986 in pressGoogle Scholar
17. Marshall, D. B., J. Am. Ceram. Soc. 69, 173 (1986)Google Scholar