Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:44:24.268Z Has data issue: false hasContentIssue false

Waveguiding and 1.54 μm Er3+ Photoluminescence Properties of Erbium Doped Silicon Rich Silicon Oxide

Published online by Cambridge University Press:  10 February 2011

Se-Young Seo
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Hak-Seung Han
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

The waveguiding and 1.54 μm Er3+ photoluminescent properties of Er doped silicon-rich silicon oxide (SRSO) are investigated. Erbium-doped SRSO films, which consist of nanocrystalline Si clusters embedded inside Si0 2 matrix, were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium. The excess Si content of the SRSO films ranged from 0 to 10 at. %, and Er content ranged from 0.01 to 0.3 at. %. After deposition, films were rapid thermal annealed at temperatures between 750 and 1150°C for durations ranging from 2 to 20 min. to precipitate silicon nanoclusters. All films show strong room temperature 1.54 μm Er3+ photoluminescence. The luminescence lifetimes that can be > 6 msec. The refractive indices of the SRSO films range from 1.48 to 2.47, increasing with increasing excess Si content. Thus, waveguides can be formed easily by depositing erbium doped SRSO films on 1 μm thick SiO2 films. Furthermore, carrier-induced de-excitation mechanisms of excited erbium atoms in SRSO are nearly completely suppressed in such SRSO films, indicating that population inversion of Er3+ ions by carrier-mediated excitation is possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Rare Earth doped Semiconductors II, edited by S. Coffa, A. Polman, and R.N. Schwartz, Mat. Res. Soc. Symp. Vol. 301 (1996)Google Scholar
2. Kik, P. G., de Dood, M. J. A., Kikoin, K., and Polman, A., Appl. Phys. Lett. 70 1721 (1997)Google Scholar
3. Priolo, F., G. Franz6, Coffa, S., and Camera, A., Phys. Rev. B 57 4443 (1998)Google Scholar
4. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. C., Phys. Rev. B 54 17603 (1996)Google Scholar
5. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 48 11024 (1993)Google Scholar
6. Shin, J. H., Hoven, G. N. van den, and Polman, A., Appl. Phys. Lett. 66 2379 (1995)Google Scholar
7. Wu, X., Hömmerich, U., Namavar, F., and Cremins-Costa, A. M. Appl. Phys. Lett. 69 1903 (1996)Google Scholar
8. Kenyon, A. J., Trwoga, P. F., Federighi, M. and Pitt., C. W., J. Phys.: Condens. Matter 6 L319 (1994)Google Scholar
9. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamanoto, K., Appl. Phys. Lett. 71 1198 (1997)Google Scholar
10. Shin, J. H., Kim, M-J., Seo, S-Y., and Lee, C., Appl. Phys. Lett. 72 1092 (1998)Google Scholar
11. Seo, Se-Young, Shin, Jung H., and Lee, Choochon Mat. Res. Soc. Proc. 536 75 (1998)Google Scholar
12. Seo, Se-Young and Shin, Jung H., Appl. Phys. Lett., in press.Google Scholar