Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T01:02:53.706Z Has data issue: false hasContentIssue false

The Volume Fraction Profile of Terminally Adsorbed Polymers

Published online by Cambridge University Press:  25 February 2011

R. J. Composto
Affiliation:
Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
T. Mansfield
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
G. Beaucage
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
R. S. Stein
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
D. R. Iyengar
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
T. J. Mc Carthy
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
S. K. Satija
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
J. F. Ankner
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
C. F. Majkrzak
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

We have used neutron reflectivity to measure the concentration profile of carboxylic acid-terminated polystyrene at the liquid/solid interface. Two isotopic systems were studied: (1) deuterated polystyrene (DPS) in cyclohexane and (2) polystyrene (PS) in deuterated cyclohexane. Although measured at 24°C (a poor solvent condition), the high grafting density of PS tethered chains causes the chains to weakly stretch to 3-5 times its unperturbed dimension. Although of similar molecular weight, the height of the DPS layer is about 50% higher than that of the PS. In both systems, the volume fraction of polymer near the wall is ∼ 0.60. For the DPS system, reflectivity profiles can be simulated using a parabolic profile with a depletion layer at the silicon-liquid interface. However, in the PS system, no depletion is observed. Here, the shape. of the PS concentration profile is parabolic with a rounded tail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Golander, C.G.; Kiss, E. J. Colloid Interface Sci. 1988, 121, 240.CrossRefGoogle Scholar
2. Napper, D.H. Polymeric Stabilization of Colloidal Dispersions;Academic Press: New York, 1983.Google Scholar
3. Milner, S.T. Science 1991,251, 905.CrossRefGoogle Scholar
4. Alexander, A. J. Phys. (Paris) 1977, 38, 983.CrossRefGoogle Scholar
5. de Gennes, P.G. Macromolecules 1980, 13, 1069.CrossRefGoogle Scholar
6. Milner, S.T.; Witten, T.A.; Cates, M.E. Macromolecules 1988,21, 2610.CrossRefGoogle Scholar
7. DiMarzio, E.A.; McCrackin, F.L. J. Chem. Phys. 1965, 43, 539.CrossRefGoogle Scholar
8. Hesselink, F.T. J. of Phys. Chem. 1969, 73, 3488.CrossRefGoogle Scholar
9. Muthukumar, M.; Ho, J.S. Macromolecules 1989, 22, 965.CrossRefGoogle Scholar
10. Patel, S.S.; Tirrell, M. Annu. Rev. Phys. Chem. 1989, 40, 597.CrossRefGoogle Scholar
11. Scheutjens, J.M.H.M.; Fleer, G.J. J. Phys. Chem. 1980,84, 178.CrossRefGoogle Scholar
12. Cosgrove, T. J. Chem. Soc. Faraday Trans. 1990, 86, 1323.CrossRefGoogle Scholar
13. Zhao, X.; Zhao, W.; Rafailovich, M.H.; Sokolov, J.; Russell, T.P.; Kumar, S.K.; Schwarz, S.A.; Wilkens, B.J. submitted to PRL.Google Scholar
14. Iyengar, D.R.; McCarthy, T.J. Macromolecules 1990, 23, 4344.CrossRefGoogle Scholar
15. Quirk, R.P. Macromolecules 1989,22, 85.CrossRefGoogle Scholar
16. Strazielle, C.; Benoit, H. Macromoleculs 1975,8, 203.CrossRefGoogle Scholar
17. Satija, S. K; Majkrzak, C.F.; Russell, T.P.; Sinha, S. K; Sirota, E.B.; Hughes, C.J. Macromolecules 1990,23, 3860.CrossRefGoogle Scholar
18. Sinha, S. K; Sirota, E.B.; Garoff, S.; Stanley, H.B. Phys. Rev. B 1988, 38, 2287.CrossRefGoogle Scholar
19. Anastasiadis, S.H.; Russell, T.P.; Satija, S. K; Majkrazak, C.F. J. Chem. Phys. 1990, 92, 5677.CrossRefGoogle Scholar
20. Klein, J. J. Chem. Soc., Faraday Trans. 1 1983, 79, 99.CrossRefGoogle Scholar
21. Cosgrove, T.; Heather, T.G.; Phipps, J.S.; Richardson, R.M. Macromolecules 1991, 24, 94.CrossRefGoogle Scholar
22. Milner, S.T. J. Chem. Soc. Faraday Trans. 1990, 86, 1349.CrossRefGoogle Scholar
23. Satija, S.K, Ankner, J.F., Majkrzak, C.F., Mansfield, T., Beaucage, G., Stein, R.S., Iyenger, D.R., McCarthy, T.J., and Composto, R.J., submitted to Phys. Rev. Let..Google Scholar
24. Stromberg, R.R.; Tutas, D.J.; Passaglia, B.J. Phys. Chem 1965, 69, 3955.CrossRefGoogle Scholar
25. Takahashi, A.; Kawaguchi, M.; Hideyuki, H.; Tadaya, K. Macromolecules 1980, 13, 884.CrossRefGoogle Scholar
26. Auroy, P.; Auray, L.; Leger, L. Phys. Rev. Lett. 1991, 66, 719.CrossRefGoogle Scholar