Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T05:13:17.220Z Has data issue: false hasContentIssue false

The void fraction of melter feed during nuclear waste glass vitrification

Published online by Cambridge University Press:  23 March 2015

Zachary J. Hilliard
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA, 99354, U.S.A.
Pavel R. Hrma
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA, 99354, U.S.A. Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
Get access

Abstract

To efficiently vitrify Hanford waste, the melting process (i.e., melter feed turning into waste glass) must be modeled and optimized. The rate of heat transfer to the melter feed in a waste glass melter, and thus the rate of melting, is strongly affected by the melter feed porosity, especially in the final stages where the glass-forming melt produces foam that insulates the feed from the molten glass. The volume expansion test allows the determination of the melter feed porosity as a function of temperature. This test measures the profile area of the feed pellet as it turns into glass. This contribution presents the calculation of the void fraction (porosity) of the melter feed as a function of temperature, heating rate, and material parameters. The process of finding the void fraction is described as well as results from the application of this process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kirkbride, R. A., Allen, G. K., Orme, R. M., Wittman, R. S., Baldwin, J. H., Crawford, T. W., Jo, J., Fergestrom, L. J., Hohl, T. M., Penwell, D. L., Tank waste remediation system operation and utilization plan, Vol. I, HNF-SD-WM-SP-012, Numatec Hanford Corporation, Richland Washington (1999).Google Scholar
Pokorny, R., Hrma, P., Mathematical modeling of cold cap, J. Nucl. Materials 429, 245256 (2012).CrossRefGoogle Scholar
Pokorny, R., Hrma, P., Model for the conversion of nuclear waste melter feed to glass, J. Nucl. Materials 445, 190199 (2014).CrossRefGoogle Scholar
Rice, J. A., Pokorny, R., Schweiger, M. J., Hrma, P., Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures, J. Am. Ceram. Soc., 17 (2014).Google Scholar
Hrma, P., Melting of Foaming Batches: Nuclear Waste Glass, Glastech. Ber. 63K, 360369 (1990).Google Scholar
Pokorny, R., Kruger, A. A., Hrma, P., Mathematical modeling of cold cap: Effect of bubbling on melting rate, Ceram. Silikaty 58, 296304 (2014).Google Scholar
Hrma, P., Schweiger, M. J., Humrickhouse, C. J., Moody, J. A., Tate, R. M., Rainsdon, T. T., TeGrotenhuis, N. E., Arrigoni, B. M., Marcial, J., Rodriguez, C. P., Tincher, B. H., “Effect of glass-batch makeup on the melting process,” Ceramics-Silikaty 54, 193211 (2010).Google Scholar
Henager, S. H., Hrma, P., Swearingen, K. J., Schweiger, M. J., Marcial, J., TeGrotenhuis, N. E., Conversion of batch to molten glass, I: Volume expansion, J. Non-Cryst. Solids 357, 829835 (2011).CrossRefGoogle Scholar
Pokorny, R., Pierce, D. A., Hrma, P., Melting of glass batch: Model for multiple overlapping gas-evolving reactions, Thermochimica Acta 541, 814 (2012).CrossRefGoogle Scholar
Rodriguez, C., Chun, J., Schweiger, M., Hrma, P., Understanding cold-cap reactions of nuclear waste feeds through evolved gas analysis, Thermochimica Acta 592, 8692 (2014).CrossRefGoogle Scholar
Hrma, P., Swearingen, K. J., Henager, S. H., Schweiger, M. J., Marcial, J., TeGrotenhuis, N. E., Conversion of batch to molten glass, II: Dissolution of quartz particles, J. Non-Cryst. Solids 357, 820828 (2011).CrossRefGoogle Scholar
Hrma, P., Marcial, J., Dissolution retardation of solid silica during glass-batch melting, J. Non-Cryst. Solids 357, 29542959 (2011).CrossRefGoogle Scholar
Marcial, J., Chun, J., Hrma, P., Schweiger, M. J., Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass, Environ. Sci. and Technol. 48, 1217312180 (2014).CrossRefGoogle Scholar
Hrma, P., Piepel, G. F., Schweiger, M. J., Smith, D. E., Kim, D. S., Redgate, P. E., Vienna, J. D., LoPresti, C. A., Simpson, D. B., Peeler, D. K., Langowski, M. H., Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Vol. 1 and 2, Pacific Northwest Laboratory, Richland, Washington (1994).CrossRefGoogle Scholar
Hrma, P., Glass viscosity as a function of temperature and composition: A model based on Adam-Gibbs equation, J. Non-Cryst. Solids 354, 33893399 (2008).CrossRefGoogle Scholar
Linard, Y., Nonnet, H., Advocat, T., Physicochemical model for predicting molten glass density, J. Non-Cryst. Solids 354, 49174926 (2008).CrossRefGoogle Scholar
“Physical Constants of Inorganic Compounds”, in CRC Handbook of Chemistry and Physics, Internet Version 2005, Lide, David R., ed., <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005.,+CRC+Press,+Boca+Raton,+FL,+2005.>Google Scholar