Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-26T07:24:16.199Z Has data issue: false hasContentIssue false

Very Thin Micromorph Tandem Solar Cells Deposited at Low Substrate Temperature

Published online by Cambridge University Press:  18 May 2012

M.M. de Jong
Affiliation:
University Utrecht, Debye Institute for Nanomaterials Science, Nanophotonics-Physics of Devices, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
J.K. Rath*
Affiliation:
University Utrecht, Debye Institute for Nanomaterials Science, Nanophotonics-Physics of Devices, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
R.E.I. Schropp
Affiliation:
University Utrecht, Debye Institute for Nanomaterials Science, Nanophotonics-Physics of Devices, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
*
*Correspondence : J.K.Rath@uu.nl
Get access

Abstract

As an alternative to crystalline silicon or thin film solar cells on rigid glass substrates, we aim to fabricate amorphous silicon (a-Si)/nanocrystalline silicon (nc-Si) tandem thin film solar cells on cheap flexible substrates. We have chosen polycarbonate as the superstrate and adapted the a-Si and nc-Si deposition processes for deposition at a maximum temperature of 130°. Because a-Si deposited at low temperatures has a high band gap, we were able to fabricate very thin (<1.2 μm) a-Si/nc-Si solar cells, because the high band gap of the a-Si shifts the current generation more towards the bottom cell, allowing for a much thinner (900 nm) bottom cell. The somewhat lower Jsc of the complete cell is partly compensated by a higher Vocwhich results in an initial conversion efficiency of 9.5% for the low temperature tandem solar cells on glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fakirov, S., Balta Calleja, F. J., and Krumova, M., Journal of Polymer Science Part B: Polymer Physics, 37(13), 14131419, (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
Mase, H., Kondo, M., and Matsuda, A., Solar Energy Materials and Solar Cells, 74(1-4), 547552, (2002).CrossRefGoogle Scholar
Takeda, T., Kondo, M., and Matsuda, A., Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, volume B, 15801583, (2003).Google Scholar
Rath, J. K., Brinza, M., Liu, Y., Borreman, A., and Schropp, R. E. I., Solar Energy Materials and Solar Cells, 94(9), 15341541, (2010).CrossRefGoogle Scholar
Ishikawa, Y. and Schubert, M. B., Jpn. J. Appl. Phys., 45, 68126822, (2006).CrossRefGoogle Scholar
de Jong, M. M., Rath, J. K., Schropp, R. E. I., Sonneveld, P. J., Swinkels, G. L. A. M., Holterman, H. J., Baggerman, J., van Rijn, C. J. M., and Hamers, E. A. G., J. Non-Cryst. Solids (2012), doi:10.1016/j.jnoncrysol.2011.12.066 Google Scholar
Rath, J. K., De Jong, M. M., Verkerk, A., Brinza, M., and Schropp, R. E. I., Materials Research Society Symposium Proceedings, 1153, 463468, (2009).CrossRefGoogle Scholar
Schicho, S., Hrunski, D., Van Aubel, R., and Gordijn, A., Progress in Photovoltaics: Research and Applications, 18(2), 8389, (2010).CrossRefGoogle Scholar
Meillaud, F., Feltrin, A., Despeisse, M., Haug, F-J., Domin, D., Python, M., Soderstrom, T., Cuony, P., Boccard, M., Nicolay, S., and Ballif, C., Solar Energy Materials and Solar Cells, 95(1), 127130, (2011).CrossRefGoogle Scholar
Rath, J.K., Verkerk, A., Franken, R.H., van Bommel, C., van der Werf, C.H.M., Gordijn, A., Schropp, R.E.I., Proc. IEEE 4th World Conference on Photovoltaic energy conversion (2006) p.1473.Google Scholar