Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T19:32:50.478Z Has data issue: false hasContentIssue false

Vertical-Cavity Optoelectronic Structures: CAD, Growth, and Structural Characterization

Published online by Cambridge University Press:  25 February 2011

D. H. Christensen
Affiliation:
National Institute of Standards and Technology, Boulder, CO 80303
S. M. Crochiere
Affiliation:
Bandgap Technology Corporation, Broomfield, CO 80021
J. G. Pellegrino
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
R. S. Rai
Affiliation:
Bandgap Technology Corporation, Broomfield, CO 80021
C. A. Parsons
Affiliation:
Bandgap Technology Corporation, Broomfield, CO 80021
W. F. Tseng
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
R. K. Hickernell
Affiliation:
National Institute of Standards and Technology, Boulder, CO 80303
Get access

Abstract

Simulations of reflectance spectra and electric field distributions for vertical-cavity structures were used in the computer aided design of epitaxial mirrors and lasers. The binary GaAs/AlAs superlattice alloys and AlxGa1−xAs random alloys that compose these structures were grown by molecular beam epitaxy. Photoluminescence, photoreflectance, reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, and double crystal x-ray diffractometry were applied to characterize cavity and Bragg mirror layer thicknesses and alloy composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jewell, J.L., Harbison, J.P., Scherer, A., Lee, Y.H., and Florez, L.T., IEEE J. Quantum Electron. 27, 1332 (1991).Google Scholar
2. Yablonovitch, E., Gmitter, T.J., and Bhat, R., Phys. Rev. Lett. 61, 2546 (1988).Google Scholar
3. Yamamoto, Y., Machida, S., Igeta, K., and Horikoshi, Y., Coherence and Quantum Optics VI (Plenum Press, New York, 1990).Google Scholar
4. Furman, Sh. A. and Tikhonravov, A.V., Basics of Optics of Multilayer Systems (Editions Frontieres, Paris, 1992).Google Scholar
5. Huang, H.C., Yee, S., and Soma, M., J. Appl. Phys. 67, 1497 (1990).Google Scholar
6. Afromowitz, M.A., Solid State Comm. 15, 59 (1974).Google Scholar
7. Terry, F.L. Jr, J. Appl. Phys. 70, 409 (1991).Google Scholar
8. Casey, H.C. Jr, Sell, D.D., and Panish, M.B., Appl. Phys. Lett. 24, 63 (1974).Google Scholar
9. Sell, D.D., Casey, H.C. Jr, and Wecht, K.W., J. Appl. Phys. 45, 2650 (1974).Google Scholar
10. Casey, H.C. Jr, Sell, D.D., and Wecht, K.W., J. Appl. Phys. 46, 250 (1975).Google Scholar
11. Aspnes, D.E., Kelso, S.M., Logan, R.A., Bhat, R., J. Appl. Phys. 60, 754 (1986).Google Scholar
12. Bottka, N., Gaskill, D. K., Sillmon, R. S., Henry, R., and Glosser, R., Electron, J.. Mater. 17, 161 (1988).Google Scholar
13. Bravman, J.C. and Sinclair, R., J. Electron Microscopy Tech. 1, 53 (1984).Google Scholar
14. Petroff, P.M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
15. Tapfer, L. and Ploog, K., Phys. Rev. B 33, 5565 (1986).Google Scholar
16. Fewster, P.F., Philips J. Res. 41, 268 (1986).Google Scholar
17. Tanner, B.K., Miles, S.J., Peterson, G.G., and Sacks, R.N., Mater. Lett. 7, 239 (1988).Google Scholar
18. Casey, H.C. Jr, and Panish, M.B., Hetero-structure Lasers: Part B, Materials and Operating Characteristics (Academic, San Diego, 1978).Google Scholar
19. Aspnes, D.E., Surf. Sci. 37, 418 (1973).Google Scholar
20. Tanner, B.K., Turnbull, A.G., Stanley, C.R., Kean, A.H., and McElhinney, M., Appl. Phys. Lett. 59, 2272 (1991).Google Scholar
21. Chu, X. and Tanner, B.K., Semicond. Sci. Technol. 2, 765 (1987).Google Scholar
22. Tanner, B.K. and Halliwell, M.A.G., Semicond. Sci. Technol. 3, 967 (1988).Google Scholar
23. Cohen, B.G. and Focht, M.W., Solid State Electron. 13, 105 (1970).Google Scholar