Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T01:40:41.296Z Has data issue: false hasContentIssue false

Variable-Range Hopping in the Array of Magnetic Quantum Dots

Published online by Cambridge University Press:  17 March 2011

M. Foygel
Affiliation:
Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701-3995
R. D. Morris
Affiliation:
USRA/RIACS, NASA Ames Research Center, Moffet Field, CA 94035-1000
A. G. Petukhov
Affiliation:
USRA/RIACS, NASA Ames Research Center, Moffet Field, CA 94035-1000
Get access

Abstract

We analyzed the spin-dependent conductivity in the system of paramagnetic quantum dots embedded in semi-insulating matrix, which is due to bound magnetic polaron (BMP) inter-dot hopping. If such a system is characterized by wide distributions of the “bare” electron energies and BMP shifts, variable-range and variable-polaron-barrier hopping can be observed at low temperaturesT. It results in the giant magnetoresistance,ρ(H, T ) governed by a non-activation law, lnρ /α [T0(H)/T ]p, whereT0(H) drops with magnetic field,H. Depending on the conditions, parameters of the material, and the dimensionality of the system, the exponent 0.25 < p < 0.75. This type ofT -dependence has been observed in GaMnAs and MnGe magnetic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schmidt, D., Petukhov, A.G., Foygel, M., Ibbetson, J. P, and Allen, S. J., Phys. Rev. Lett 82, 823 (1999).Google Scholar
[2] Dietl, T., Antozsewski, J. and Swierkowski, L., Physica 117B & 118B, 491 (1983).Google Scholar
[3] Ioselevich, A. S., JETP Lett. 43, 188 (1986); Phys. Rev. Lett. 71, 1067 (1993).Google Scholar
[4] Petukhov, A. G. and Foygel, M., Phys. Rev. B62, 520 (2000).Google Scholar
[5] Esch, A. Van, Bockstal, L. Van, Boeck, J. De, Verbanck, G., Steenbergen, A. S. van, Wellmann, P. J., Grietens, B., Bogaerts, R., Herlach, F., Borghs, G., Phys. Rev. B 56, 13103 (1997); T. C. Kreutz, G. Zanelatto, R. Kawakami, E. Johnston-Halperin, E. J. Gwinn, A. C. Gossard, D. D. Awschalom, AVS 48th International Symposium, San Francisco, CA, 2001, p.98; P. A. Crowell, private communication.Google Scholar
[6] Park, Y. D., Wilson, A., Hanbicki, A. T., Mattson, J. E., Ambrose, T., Spanos, G., Jonker, B. T., Appl. Phys. Lett. 78, 2739 (2001).Google Scholar
[7] Shklovskii, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors, Springer Series in Solid State Sciences, vol. 45 (Springer-Verlag, Berlin, 1984).Google Scholar
[8] Dietl, T. and Spalek, J., Phys. Rev. B 28, 1548 (1983).Google Scholar
[9] Helman, J. S. and Abeles, B., Phys. Rev. Lett. 37, 1429 (1976).Google Scholar
[10] Ioselevich, A. S.. Phys. Rev. Lett. 74, 1411 (1995).Google Scholar