Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T14:49:41.642Z Has data issue: false hasContentIssue false

UV Radiation Effects on the Sol-Gel Processing of Ferroelectric PZT Thin Films

Published online by Cambridge University Press:  10 February 2011

K. S. Brinkman
Affiliation:
Department of Ceramic and Materials Engineering, Clemson University Clemson, SC 29634-0907
R. W. Schwartz
Affiliation:
Department of Ceramic and Materials Engineering, Clemson University Clemson, SC 29634-0907, bob.schwartz@ces.clemson.edu
J. Ballato
Affiliation:
Department of Ceramic and Materials Engineering, Clemson University Clemson, SC 29634-0907
Get access

Abstract

Sol gel solutions have been modified with hydrogen peroxide to improve the durability of photo-irradiated films to water and acidic solvents for photo-patterning. The solutions used for film fabricati.on are aqueous based and contain acetylacetonate (acac). UV-Vis absorption studies indicate that peroxide modifies the acetylacetonate ligand (in this case the zirconium precursor) creating a new absorbing species at longer wavelength which also affects the response of the acac ligand to UV radiation. Precursor modification and UV treatments have also been shown to impact the texture and improve the microstructure of resulting films. Depth profiling by radio-frequency glow discharge atomic emission spectroscopy indicates reduction in the carbon to hydrogen ratios of films crystallized after exposure to UV radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Otsuki, T. and Arita, K., Integrated Ferroelectrics, 17 (1-4), 31 (1997).Google Scholar
2 Kim, J. H., Wang, L., Aurn, S. M., Li, L., Yoon, Y. S., and Polla, D. L., Integrated Ferroelectrics, 15 (1-4), 325 (1997).Google Scholar
3 Lin, C. T., Li, L., Webb, J. S., Lipeless, R. A. and Leung, M. S., Integrated Ferroelectrics, 3, 333 (1993).Google Scholar
4 Lin, C.T., Scanlan, B. W., McNeill, J. D., Webb, J. S., and Li, Li, J. Mater. Res., 7, 2546 (1992).Google Scholar
5 Wright, J. S. and Francis, L. F., Mat. Res. Soc. Symp. Proc., 433, 357 (1996).Google Scholar
6 Tohge, N., Shinmou, K., Minami, T., J. of Sol-Gel Science and Technology, 2, 581 (1994).Google Scholar
7 Nakao, Y., Nakamura, T., Hoshiba, K., Sameshima, K., Kamisawa, A., Jpn. J Appl Phys., 32, 4141 (1993).Google Scholar
8 Soyama, N., Sasaki, G., Atsuki, T., Yonezawa, T., Ogi, K., Jpn. J Appl. Phys, 33, 5268 (1994).Google Scholar
9 Parker, M., Hartenstein, M. L., Marcus, R. K., Anal. Chem., 68, 4213 (1996).Google Scholar
10 Hartenstein, M. L., Marcus, R. K., J Anal. At. Spectrom., 12, 1027 (1997).Google Scholar
11 Schwartz, R. W., Assink, R. A., Dimos, D., Sinclair, M. B., Boyle, T. J., Bucheit, C. D., Mat. Res. Soc. Symp Proc. 361, 377 (1995).Google Scholar
12 Dobberstein, H., unpublished results.Google Scholar
13 Anfone, A., private communication.Google Scholar