Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-12T20:14:43.823Z Has data issue: false hasContentIssue false

UV Laser Processing of Semiconductor Devices

Published online by Cambridge University Press:  28 February 2011

T. W. Sigmon*
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

The use of a pulsed UV excimer laser based process for the incorporation of dopant impurities into Si is described. The process can result in high concentration shallow box like profiles suitable for submicron VLSI device fabrication. The process consists of exposure of the clean silicon surface to a doping gas (B2H6, AsH3, PH3) then driving the adsorbed monolayers of dopant into the Si by a melt-regrowth process initiated by a pulsed XeCl excimer laser. Modeling of the process allows prediction of the resulting doping profiles and electrical properties of the doped layers. Excellent crystal quality of the doped layers is found even without a postdoping anneal. Also, recent results indicate that post doping annealing may not be needed for improvement of the electrical characteristics of the doped layers provided certain conditions are met. Detailed descriptions of the process, results, modeling and device fabrication are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. SRC Early Awareness Technical Briefing: “In Situ Laser Processing”, ed. Holton, W.C. 1986, SRC Private Communication No. P86001.Google Scholar
2. Herman, I. P., Proc. of Laser Processing and Diagnostics Conf., pp. 396–416, ed. Banerle, O., Chem. Phys. 39, Springer Verlag: New York 1984.CrossRefGoogle Scholar
3. Mitlitsky, F., Tuckerman, D.B., and McWilliams, B.M., “A Process for Laser Patterning of Thin Films”, to be presented at CLEO April 1987, Baltimore, MD.Google Scholar
4. McWilliams, B.M., Herman, I.P., Mitlitsky, F., Hyde, R.A., and Wood, L.L., Appl. Phys. Let. 43, 946 (1983).Google Scholar
5. Tuckerman, D.B. and Weisberg, A.H., IEEE Electron Dev. Lett. EDL–7, 1 (1986).Google Scholar
6. Suzuki, K., Lubben, D., and Greene, J.E., J. Appl. Phys. 58, pp. 979982 (1985).CrossRefGoogle Scholar
7. Arikade, T., Okano, H., Sekine, M., and Horiike, Y., in Laser-Controlled Chemical Processing of Surfaces, ed. by Johnson, A.W. and Ehrlich, D.J. (North-Holland, New York, 1984).Google Scholar
8. Loper, G.L. and Tabat, M.D., Appl. Phys. Lett. 46, 654 (1985).Google Scholar
9. Srinivasan, V., Smrtic, M.A., and Babu, S.V., J. Appl. Phys. 59, 3861 (1986).Google Scholar
10. Flynn, D.K., Steinfeld, J.I., and Sethi, D.S., J. Appl. Phys. 59, 3914 (1986).Google Scholar
11. Tsao, J.Y. and Ehrlich, D.J., Appl. Phys. Lett. 45, 617 (1984).Google Scholar
12. Deutsch, T.F. and Rathman, D.D., Appl. Phys. Lett. 45, 623 (1984).Google Scholar
13. Solanki, R., Ritchie, W.H., and Collins, G.J., Appl. Phys. Lett. 43, 454 (1983).CrossRefGoogle Scholar
14. Kerth, R.T., Jain, K., and Latta, M.R., IEEE Electron Dev. Lett. EDL–7 299 (1986).Google Scholar
15. Deutsch, T.F., Ehrlich, D.J., Rathman, D.D., Silversmith, D.J., and Osgood, R.M. Jr., Appl. Phys. Lett. 39, 825 (1981).Google Scholar
16. Turner, G.B., Tarrant, D., Pollock, G., Pressley, R., and Press, R., Appl. Phys. Lett. 39, 967 (1981).Google Scholar
17. Ibbs, K.G., Lloyd, M.L., Optics and Laser Technology, pp. 3539, Butterworth and Co., London (1983).Google Scholar
18. Carey, P.G., Sigmon, T.W., Press, R.L., and Fahlen, T.S., IEEE Elect. Dev. Lett. EDL–6, 291 (1985).Google Scholar
19. Dickey, and Erhstein, , NBS Special Publication 400–48 (May 1979).Google Scholar
20. Thompson, M.O., Ph.D. Dissertation, Dept. of Materials Science and Engineering, Cornell University (1985).Google Scholar
21. CRC Handbook of Chemistry and Physics, Chemical Rubber Co., Boca Raton (1980).Google Scholar
22. Ho, C.Y., Powell, R.N., and Liley, P.E., J. Phys. Chem. Ref. Data 1, 394 (1972).Google Scholar
23. Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).Google Scholar
24. Jellison, G.E. and Modine, F.A., Appl. Phys. Lett. 41, 180 (1982).Google Scholar
25. Unamono, S., Toulemonde, M., and Siffert, P., in Laser Processing and Diagnostics, ed. Bauerle, D., p. 35 (1984).Google Scholar
26. White, C.W., Journal de Physique 44, C5145 (1983).Google Scholar
27. van Gurp, G.J., Eggermont, G.E., Tamminga, Y., Stacy, W.T., and Gijsbers, J.R.M., Appl. Phys. Lett. 35, 273 (1979).Google Scholar
28. Perino, S.C., P.hD. Dissertation, Dept. of Elect. Engr. Stanford University (1982).Google Scholar
29. Zemansky, M.W., on Heat and Thermodynamics, p. 164 Addison Wesley.Google Scholar
30. Masetti, G., Severi, M., and Solmi, S., IEEE Trans. on Electron Dev. ED–30, 764 (1983).Google Scholar
31. Liu, T.M. and Oldham, W.G., IEEE Electron Dev. Lett. EDL–4, 59 (1983).Google Scholar
32. Seidel, T.E., Lischner, D.J., Pai, C.S., Knoell, R.V., and Moher, D.M., in Proc. Conf. on Ion Beam Modif. of Matls. Cornell 1984 (to be published).Google Scholar
33. Seidel, T.E., IEEE Electron Dev. Lett. EDL–4, 353 (1983).Google Scholar
34. Carey, P.G., Sigmon, T.W., Press, R.L., and Fahlen, T.S., IEEE Electron Dev. Lett. EDL–6, 291 (1985).Google Scholar
35. Carey, P.G. and Sigmon, T.W., to be published.Google Scholar
36. Carey, P.G., Bezjian, K., Sigmon, T.W., Gildea, P., and Magee, T.J., IEEE Electron Dev. Lett. EDL–7, 440 (1986).Google Scholar