Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T12:23:11.511Z Has data issue: false hasContentIssue false

Use of Pt Gate Metallization to Reduce Gate Leakage Current in GaAs MESFETs

Published online by Cambridge University Press:  26 February 2011

F. Ren
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
A. B. Emerson
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
J. Lothian
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
Get access

Abstract

The use of wet-chemical removal of native oxide in a sealed nitrogen ambient prior to deposition of metal on GaAs is shown to be an effective method of engineering the Schottky barrier height of the metal contacts. Due to its higher metal work function, a barrier height of 0.98 eV for Pt on n-type GaAs is demonstrated. This is considerably higher than the barrier height of conventionally processed TiPtAu contacts (0.78 eV). MESFETs fabricated using PtAu bilayer contacts show reverse currents an order of magnitude lower than TiPtAu contacted companion devices, higher reverse breakdown voltages and much lower gate leakage. Utilizing this technology of oxide removal and the PtAu bilayer contact provides a much simpler method of enhancing the barrier height on n-type GaAs than other techniques such as counter-doping the near-surface or inserting an interfacial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See for example, Eglash, S. J., Newman, N., Pan, S., Mo, D., Shenai, K., Spicer, W. E., Shenai, F. A. and Collins, D. M., J. Appl. Phys. 61 5159 (1987), and references therein.Google Scholar
[2] Stanchina, W. E., Clark, M. D., Vaidyanathan, K. V., Juliens, R. A. and Crowell, C. R., J. Electrochem. Soc. 134 967 (1987).CrossRefGoogle Scholar
[3] Priddy, K. L., Kitchen, D. P., Grzyb, J. A., Litton, C. W., Henderson, T. S., Peng, C-K., Kopp, W. F. and Morkoc, H., IEEE Trans. Electron. Dev. ED-34 175 (1987).Google Scholar
[4] Eizenberg, M., Callegari, A. C., Sadana, D. K., Hovel, H. J. and Jackson, T. N., Appl. Phys. Lett. 54 1696 (1989).Google Scholar
[5] Baier, S. M., Lee, G. Y., Chung, H. K., Fure, B. J. and Cirillo, N. C., Electron. Lett. 23 223 (1987).Google Scholar
[6] Pearton, S. J., Ren, F., Abernathy, C. R., Hobson, W. S., Chu, S. N. G. and Kovalchick, J., Appl. Phys. Lett. 55 1342 (1989).CrossRefGoogle Scholar
[7] Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 52 17974 (1988).Google Scholar
[8] Ren, F., Emerson, A. B., Pearton, S. J., Fullowan, T. R. and Brown, J. M., Appl. Phys. Lett. 58 1030 (1991).Google Scholar
[9] Callegari, A., Lacey, D. and Pan, E. T.-S., Solid State Electronics 29 523 (1986).Google Scholar
[10] Woodall, J. M. and Freeouf, J. L., J. Vac. Sci. Technol., 21 574 (1982).Google Scholar
[11] Rhoderick, E. H. and Williams, T. H., “Metal-Semiconductor Contacts (Oxford Science, UK 1988).Google Scholar
[12] Iwasaki, H., Mizokawa, Y., Nishitani, R. and Nakamura, J. J. of Appl. Phys. 17 315 (1978).Google Scholar
[13] Sze, S. M., “Physics of Semiconductor Device” (Wiley NY 1981).Google Scholar
[14] Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor Contacts” (Clarendon, Oxford, 1988).Google Scholar
[15] Schottky, W., Phys. Rev. 26, 843 (1938).Google Scholar