Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:38:16.559Z Has data issue: false hasContentIssue false

Ultra-Smooth ZnO Buffer Layers on (001) Sapphire

Published online by Cambridge University Press:  10 February 2011

A. J. Drehman
Affiliation:
Air Force Research Laboratory, AFRL/SNHX, 80 Scott Dr., Hanscom AFB, MA 01731
S.-Q. Wang
Affiliation:
National Research Council Research Associate
P. W. Yip
Affiliation:
Air Force Research Laboratory, AFRL/SNHX, 80 Scott Dr., Hanscom AFB, MA 01731
Get access

Abstract

Using off-axis reactive rf sputtering, we have grown extremely smooth, nearly epitaxial, (001) oriented ZnO films on c-axis sapphire substrates. Atomic Force Microscopy was used to determine that these films are extremely smooth, having an rms roughness of only a few tenths of a nanometer. Based on high resolution x-ray diffraction (HXRD), the ZnO is highly oriented, with a rocking curve width of less than 400 arc seconds for the (006) diffraction peak, and only somewhat larger for the (112) reflection. HXRD Phi scans show that the ZnO (112) reflection is rotated in the a-b plane by 30 degrees from the sapphire (113) direction. These two measurements indicate excellent in-plane orientation. We are investigating the use of these buffer layers for subsequent GaN growth. Electrical resistivities of the films exceeded 100 kΩ-cm making ZnO a potential candidate as an insulating buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peng, T., Pipek, J., Qiu, G., Olowolafe, J.O., Unruh, K.M., Swann, C.P., and Schubert, E.F., Appl. Phys. Lett., 71, 2439 (1997).Google Scholar
2. Matsuoka, T., Yoshimoto, N., Sasaki, T., Katsui, A., J. Electron. Mater. 21, 157 (1992).Google Scholar
3. Hellman, E.S., Buchanan, D. N. E., Wiesmann, D., Brener, I., MRS Internet Journal, Vol.1, Article 16 (1996), http://nsr.mij.mrs.org/l/16/complete.htmlGoogle Scholar
4. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B. 10, 1237 (1992).Google Scholar
5. Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I., Appl. Phys. Lett., 61, 2688 (1992).Google Scholar
6. Syuichi, Takada, J. Appl. Phys., 73, 4739 (1993).Google Scholar
7. Jwo-Huei, Jou, Min-Yung, Han, and Duen-Jen, Cheng, J. Appl. Phys., 71, 4333 (1992).Google Scholar
8. Yasuhiro, Igasaka and Hiromi, Saito, J. Appl. Phys., 70, 3613 (1991).Google Scholar
9. Czternastek, H., Brudnik, A., Jachimowski, M. and Kolawa, E., J. Phys. D: Appl. Phys. 25, 865 (1992).Google Scholar
10. Drehman, A.J., Yip, P.W., Proc. MRS, III-V Nitrides, 449, 337 (1997).Google Scholar
11. Nanto, H., Minami, T., Shooji, S., and Takata, S., J. Appl. Phys., 55, 1029 (1984).Google Scholar
12. Vispute, R.D., Talyansky, V., Trajanovic, Z., Choopun, S., Downes, M., Sharma, R.P., Venkatesan, T., Wood, M.C., Lareau, R.T., Jones, K.A. and Iliadis, A.A., Appl. Phys. Lett., 70, 2735 (1997).Google Scholar