Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T19:02:38.161Z Has data issue: false hasContentIssue false

Ultrafast Mid-Infrared Intra-Excitonic Response of Individualized Single-Walled Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Jigang Wang
Affiliation:
jwang@ameslab.gov, Iowa State University and Ames Lab, Physics, AMES, Iowa, United States
Matt W. Graham
Affiliation:
werd@berkeley.edu, Berkeley, Chemsitry, Berkeley, California, United States
Yingzhong Ma
Affiliation:
may1@ornl.gov, Berkeley, Chemsitry, Berkeley, California, United States
Graham R. Fleming
Affiliation:
fleming@cchem.berkeley.edu, Berkeley, Chemsitry, Berkeley, California, United States
Robert A Kaindl
Affiliation:
RAKaindl@lbl.gov, Berkeley, Materials Sciences Div., Berkeley, California, United States
Get access

Abstract

We present femtosecond mid-infrared (mid-IR) studies of the broadband low-energy response of individualized (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed in these semiconducting tubes around 200 meV photon energy. The transition energy and broadly sloping spectral shape are characteristic of quasi 1D intra-excitonic transitions between different relative-momentum states. Our result yields a value of the intra-excitonic absorption cross section of σMIR≈4×10-5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dresselhaus, M. S. Dresselhaus, G. Saito, R. and Jorio, A. Annu. Rev. Phys. Chem. 58, 719 (2007).Google Scholar
2 O'Connell, M. J. et al. , Science 297, 593 (2002).Google Scholar
3 Wang, F. Dukovic, G. Brus, L. E. and Heinz, T. F. Science 308, 838 (2005).Google Scholar
4 Maultzsch, J. et al. , Phys. Rev. B. 72, 241402 (2005).Google Scholar
5 Ma, Y.Z. Hertel, T. Vardeny, Z. V. Fleming, G. R. and Valkunas, L. in Carbon Nanotubes, edited by Jorio, A. Dresselhaus, G. and Dresselhaus, M. S. (Springer Verlag, Berlin, Heidelberg, 2008), pp. 321.Google Scholar
6 Ideguchi, T. Yoshioka, K. Mysyrowicz, A. and Kuwata-Gonokami, M., Phys. Rev. Lett. 100, 233001 (2008).Google Scholar
7 Kaindl, R. A. Carnahan, M. A. Hägele, D., Lövenich, R., and Chemla, D. S. Nature 423, 734 (2003).Google Scholar
8 Kaindl, R. A. Hägele, D., Carnahan, M. A. and Chemla, D. S. Phys. Rev. B79, 045320 (2009).Google Scholar
9 Perfetti, L. et al. , Phys. Rev. Lett. 96, 027401 (2006).Google Scholar
10 Kampfrath, T. et al. , Phys. Rev. Lett. 101, 267403 (2008).Google Scholar
11 Beard, M. C. Blackburn, J. L. and Heben, M. J. Nano Lett. 8, 4238 (2008).Google Scholar
12 Zhao, H. Mazumdar, S. Sheng, C. X. Tong, M. and Vardeny, Z. V. Phys. Rev. B73, 075403 (2006).Google Scholar
13 Wang, J. Graham, M. W. Ma, Y. Fleming, G. R. and Kaindl, R. A. submitted (2009); arxiv.org/abs/0911.2283.Google Scholar
14 Torrens, O. N. Milkie, D. E. Zheng, M. and Kikkawa, J. M. Nano Lett. 6, 2864 (2006).Google Scholar