Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T15:22:35.183Z Has data issue: false hasContentIssue false

Transparent P-type Conducting LaCuOS Layered Oxysulfide

Published online by Cambridge University Press:  21 March 2011

Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, JAPAN
Shin-ichiro Inoue
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, JAPAN
Sakyo Hirose
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, JAPAN
Hiroshi Kawazoe
Affiliation:
R&D Center, HOYA Corporation, 3-3-1 Musashino, Akishima 196-8510, JAPAN
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, JAPAN
Get access

Abstract

Materials design for transparent p-type conducting oxides was extended to oxysulfide system. LaCuOS was selected as a candidate for a transparent p-type semiconductor. It was found that the electrical conductivity of LaCuOS was p-type and controllable from semiconducting to semi-metallic states by substituting Sr2+ for La3+. LaCuOS films showed high transparency in the visible region, and the bandgap estimated was approximately 3.1 eV. Moreover, it was revealed that LaCuOS showed sharp excitonic absorption and emission at the bandgap edge, which is advantageous for optical applications. A layered oxysulfide, LaCuOS, was proposed to be a promising material for optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawazoe, H., Yanagi, H., Ueda, K., and Hosono, H., MRS Bulletin 25, 28 (2000)Google Scholar
2. Stauber, R. E., Perkins, J. D., Parilla, P. A., and Ginley, D. S., Electrochem. Solid-State Lett. 2, 654 (1999)Google Scholar
3. Duan, N., Sleight, A. W., Jayaraj, M. K., and Tate, J., Appl. Phys. Lett. 77, 1325 (2000)Google Scholar
4. Gong, H., Wang, Y., and Luo, Y., Appl. Phys. Lett. 76, 3959 (2000)Google Scholar
5. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H., Nature (London) 389, 939 (1997)Google Scholar
6. Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., and Hosono, H., J. Electroceram. 4, 427 (2000)Google Scholar
7. Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H., and Hosono, H., J. Appl. Phys. 88, 4159 (2000)Google Scholar
8. Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M., and Hirano, M., J. Appl. Phys. 89, 1790 (2001)Google Scholar
9. Yanagi, H., Hase, T., Ibuki, S., Ueda, K., and Hosono, H., Appl. Phys. Lett. 78, 1583 (2001)Google Scholar
10. Kudo, A., Yanagi, H., Hosono, H. and Kawazoe, H., Appl. Phys. Lett. 73, 220 (1998)Google Scholar
11. Kudo, A., Yanagi, H., Ueda, K., Hosono, H., Kawazoe, H., and Yano, Y., Appl. Phys. Lett. 75, 2851 (1999)Google Scholar
12. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M., and Hosono, H., Electron. Lett. 36, 1 (2000)Google Scholar
13. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M., and Hosono, H., Appl. Phys. Lett. 77, 475 (2000)Google Scholar
14. Palazzi, M., Acad. Sci., Paris, C. R. 292, 789 (1981)Google Scholar
15. Ueda, K., Inoue, S., Hirose, S., Kawazoe, H., and Hosono, H., Appl. Phys. Lett. 77, 2701 (2000)Google Scholar
16. Ueda, K., Inoue, S., Hosono, H., Sarukura, N., and Hirano, M., Appl. Phys. Lett. (in press)Google Scholar
17. Inoue, S., Ueda, K., Hosono, H., and Hamada, N., (to be submitted)Google Scholar