Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T08:34:21.353Z Has data issue: false hasContentIssue false

Translational and Rotational Motion of Small Penetrants in AF1600 Nanocomposites

Published online by Cambridge University Press:  26 February 2011

Darryl Aucoin
Affiliation:
Daucoin@clarku.edu, Clark University, Chemistry, 950 Main St., Worcester, MA, 01610, United States
Junyan Zhong
Affiliation:
JZhong@clarku.edu, Clark University, Chemistry, 950 Main St., Worcester, MA, 01610, United States
Gouxing Lin
Affiliation:
glin@clarku.edu, Clark University, Chemistry, 950 Main St., Worcester, MA, 01610, United States
Wen-Yang Wen
Affiliation:
Wwen@clarku.edu, Clark University, Chemistry, 950 Main St., Worcester, MA, 01610, United States
Alan A. Jones#
Affiliation:
AJones@clarku.edu, Clark University, Chemistry, 950 Main St., Worcester, MA, 01610, United States
Get access

Abstract

Translational and rotational motions of dichloromethane were observed in a composite of poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene), also referred to as AF1600, with fumed silica using NMR. Pulsed field gradient diffusion measurements show that adding fumed silica to AF1600 results in a great enhancement of the diffusion coefficient of dichloromethane. The diffusion enhancement behavior is similar to that previously reported in pentane, cyclohexane, and toluene in AF1600 nanocomposites. Spin-lattice relaxation time measurements of this system indicate two domains: one containing larger free volume elements (FVEs) that support faster dynamics and one containing smaller free volume elements that support slower dynamics. Adding the fumed silica disrupts the packing of polymer chains resulting in an increase of free volume and improved connections between domains supporting rapid translation. The lattice model simulation is performed to assist in understanding the mechanism of how the addition of fumed silica improves penetrant diffusion in nanocomposite polymer systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merkel, T. C., Freeman, B. D., Spontak, R. J., He, S., Pinnau, I., Meakin, P. and Hill, A. J., Science 296, 519 (2002).Google Scholar
2. Alentiev, A. Yu., Shantarovich, V. P., Merkel, T. C., Bondar, V. I., Freeman, B. D., and Yampolskii, Yu. P., Macromolecules 35, 9513 (2002).Google Scholar
3. Alentiev, A. Yu., Yampolskii, Yu. P., Shantarovich, V. P., Nemser, S. M., Plate, N. A., J. Membrane Sci. 126, 123 (1997).Google Scholar
4. Shantarovich, V. P., Kevdina, I. B., Yampolskii, Yu. P., A. Yu. Alentiev. Macromolecules 33, 74537466 (2000).Google Scholar
5. Cicerone, M.T., Wagner, P.A., Ediger, M.D., J. Phys. Chem. B. 101, 87279734 (1997).Google Scholar
6. Lin, G., Zhang, J., Cao, H., and Jones, A. A., J. Phys. Chem. B, 25, 107 (2003).Google Scholar
7. Zhong, J., Lin, G., Wen, W.-Y., Jones, A. A., Kelman, S., Freeman, B.D., Macromolecules 38, 37543764 (2005).Google Scholar
8. Cohen, M.H., Turnbull, D., J. Chem. Phys. 31, 1164 (1959).Google Scholar
9. Hill, R. J., Phys. Rev. Lett. 96, 216001 (2006).Google Scholar
10. Min, B., Qui, X. H., Ediger, M.D., Pitsikalis, M., Hadjichristidis, N., Macromolecules 34, 44664475 (2001).Google Scholar
11. Merkel, T. C., He, Z., Pinnau, I., Freeman, B. D., Meakin, P., Hill, A. J., Macromolecules 36, 84068414 (2003).Google Scholar