Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T17:10:17.088Z Has data issue: false hasContentIssue false

Transition Metal Doped ZnO for Spintronics

Published online by Cambridge University Press:  01 February 2011

Stephen J. Pearton
Affiliation:
spear@mse.ufl.edu, Univ.Florida, Materials Science and Engineering, PO Box 116400, Gainesville, FL, 32611, United States
D. P. Norton
Affiliation:
dnort@mse.ufl.edu, Univ.Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
M. P. Ivill
Affiliation:
sjpearton@gmail.com, Univ.Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
A. F. Hebard
Affiliation:
afh@physics.ufl.edu, Univ.Florida, Physics, Gainesville, FL, 32611, United States
W. M. Chen
Affiliation:
sjpearton@g,ail.com, Linkoping University, Physics, Linkoping, N/A, Sweden
I. A. Buyanova
Affiliation:
sjpearton@gamil.com, Linkoping University, Physics, Linkoping, N/A, Sweden
J. M. Zavada
Affiliation:
john.zavada@us.army.mil, Army Research Office, Electronics Division, Research Triangle Park, NC, 27709, United States
Get access

Abstract

ZnO is a very promising material for spintronics applications, with many groups reporting room temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during PLD, we find an inverse correlation between magnetization and electron density as controlled by Sn doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for the ferromagnetism include the bound magnetic polaron model or exchange is mediated by carriers in a spin-spilt impurity band derived from extended donor orbitals. Spin-dependent phenomena in ZnO may lead to devices with new or enhanced functionality, such as polarized solid-state light sources and sensitive biological and chemical sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Molnar, S. von and Read, D., Proc.IEEE, 91, 715(2003).Google Scholar
2. Ohno, H., J. Vac. Sci.Technol B, 18, 2039 (2000).Google Scholar
3. Dietl, T., Semicond. Sci. Technol., 17, 377 (2002).Google Scholar
4. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J. and Boatner, L.A., J.Appl.Phys. 93 1(2003)Google Scholar
5. Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A. and Budai, J.D., Mat.Sci.Eng.R. 40 137(2003).Google Scholar
6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
7. Sato, K. and Katayama-Yoshida, H., Semicond.Sci.Technol. 17,367(2002).Google Scholar
8. Prellier, W., Fouchet, A. and Mercey, B., J.Phys.Condensed Matter 15, R1583(2003).Google Scholar
9. Fukumura, T., Yamada, Y., Toyosaki, H., Hasegawa, T., Koinuma, H. and Kawasaki, M., Appl.Surface.Sci.(in press).Google Scholar
10. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H., Science, 291, 854(2001).Google Scholar
11. Matsumoto, Y., Takahashi, R., Murakami, M., Koida, T., Fan, X. J., Hasegawa, T., Fukumura, T., Kawasaki, M., Koshihara, S.Y., and Koinuma, H., Japan. J. Appl. Phys., 40,L1204 (2001).Google Scholar
12. Sato, K. and Katayama-Yoshida, H., Japan J. Appl. Phys., 39, L555 (2000).Google Scholar
13. Ueda, K., Tabata, H., and Kawai, T., Appl. Phys. Lett., 79, 988(2001).Google Scholar
14. Yang, S.G., Pakhomov, A.B., Hung, S.T. and Wong, C.Y., IEEE Trans.Magn. 38,2877(2002).Google Scholar
15. Wakano, N.,Fujimura, Y., Morinaga, N., Abe, A., Ashida, N., and T. Ito, Physica E, 10,260(2001)Google Scholar
16. Fukumura, T., Jin, Z.W., Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
17. Berciu, M. and Bhatt, R.N., 2001, Phys. Rev. Lett. 87, 108203 (2001)Google Scholar
18. Wakano, T., Fujimura, N., Morinaga, Y., Abe, N., Ashida, A., and T. Ito, Physica C 10, 260 (2001).Google Scholar
19. Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
20. Jung, S.W., An, S.-J., Yi, G.-C., Jung, C.U., Lee, S.-I., and Cho, S., Appl. Phys. Lett. 80, 4561 (2002).Google Scholar
21. Norton, D.P., Pearton, S.J., Hebard, A.F. Theodoropoulou, N., Boatner, L.A., and Wilson, R.G., Appl Phys. Lett. 82,239(2003).Google Scholar
22. Norton, D.P., Overberg, M.E., Pearton, S.J., Pruessner, K., Budai, J.D., Boatner, L.A., Chisholm, M.F., Lee, J.S.,Khim, Z.G., Park, Y.D. and Wilson, R.G., Appl.Phys.Lett. 83(2003)Google Scholar
23. Sato, K. and Yoshida, H. Katayama, Mat.Res.Soc.Symp. Proc. Vol. 666, F4.6.1(2001)Google Scholar
24. Shinde, S.R., Ogale, S.B., Sarma, S.D., Simpson, J.R., D, H..Drew, Hofland, S.E., Lanci, C., Buban, J.P., Browning, N.D., Kulkarni, V.N., Higgins, J., Sharma, R.P., Greene, R.L. and Venkatesan, T., Phys.Rev.B. 67, 115211(2003).Google Scholar
25. Punnoose, A., Seedra, M.S., Park, W.K. and Moodera, J.S., J.Appl.Phys. 93,7867(2003).Google Scholar
26. Nakagawa, H. and Katayama-Yoshida, H., Jap. J. Appl. Phys. 40, L1355 (2001).Google Scholar
27. Berciu, M. and Bhatt, R.N., Physica B 312/313, 815 (2002).Google Scholar
28. Durst, A.C., Bhatt, R.N. and Wolff, P.A., Phys. Rev. B 65, 235205 (2002).Google Scholar
29. Kim, J.-H., Kim, H., Kim, D., Ihm, Y.-E. and Choo, W.-K., J.Appl.Phys. 92,6066(2002).Google Scholar
30. Saeki, H.,Tabata, H., and Kawai, T., Solid-State Commun. 120,439(2001).Google Scholar
31. Cho, Y.M., Choo, W.-K., Kim, H., Kim, D. and Ihm, Y.-E., Appl.Phys.Lett. 80,3358(2002).Google Scholar
32. Lee, H.J.,Jeong, S.Y.,Cho, C.R. and Park, C.H., Appl.Phys.Lett. 81,4020(2002).Google Scholar
33. Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R..,.Guillen, J.M.Osorio, Johansson, B. andGehring, .G.A., Nature Mat. 2 673.(2003)Google Scholar
34. Hahn, S.J., Song, J.W., Yang, C.H., Park, S.H., Park, J.H., Jeong, Y.H. and Rhie, K.W., Appl.Phys.Lett. 81,421292002).Google Scholar
35. Rode, K., Mattana, R., Durand, O. and LeBourgeois, R., J.Appl.Phys. 93, 7676 (2003).Google Scholar
36. Theordoropoulou, N. et al. (to be published).Google Scholar
37. Hoffman, R.L., J.Appl.Phys. 95 5813(2004).Google Scholar
38. Ohya, Y., Niwa, T., Ban, T., and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 40, 297 (2001).Google Scholar
39. Kwon, Y., Li, Y., Norton, D.P., Park, Z.V., and Li, S., Appl. Phys. Lett. 84, 2685 (2004)Google Scholar
40. Masuda, S., Kitamura, K. and Miyatake, S., J. Appl. Phys. 93, 1624 (2003).Google Scholar
41. Hoffman, R.L., Norris, B.J., and Wager, J.F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
42. Carcia, P.F., McLean, R.S. and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
43. Wager, J.F., Science 300, 1245 (2003).Google Scholar
44. Nomura, K., Ohta, H., Ueda, K., Hirano, M., and Hosono, H., Science 300, 1269 (2003)Google Scholar
45. Nishii, J., Hossain, F.M., Takagi, S., Aita, T., Saikusa, K., Ohmaki, Y., Ohkubo, I., Kishimoto, S., Ohtomo, A., Fukumura, T., Matsukura, F., Ohno, Y., Koinuma, H., Ohno, H., and Kawasaki, M., Jpn. J. Appl. Phys., Part 2 42, L347 (2003)Google Scholar
46. Ohta, Hiromichi and Hosono, Hideo, Materials Today, 7 42(2004).Google Scholar
47. Hoffman, R.L., J.Appl.Phys. 95 5813(2004).Google Scholar
48. Ohya, Y., Niwa, T. and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 40, 297 (2001).Google Scholar
49. Kwon, Y., Li, Y., Heo, Y.W., Jones, M., Holloway, P. H., Norton, D.P., Park, Z.V., and Li, S., Appl. Phys. Lett. 84, 2685 (2004)Google Scholar
50. Masuda, S., Kitamura, K. and Miyatake, S., J. Appl. Phys. 93, 1624 (2003).Google Scholar
51. Hoffman, R.L., Norris, B.J., and Wager, J.F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
52. Carcia, P.F., McLean, R.S. and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
53. Wager, J.F., Science 300, 1245 (2003).Google Scholar
54. Nomura, K., Ohta, H., Ueda, K., Hirano, M., and Hosono, H., Science 300, 1269 (2003)Google Scholar
55. Ohta, Hiromichi and Hosono, Hideo, Materials Today, 7 42(2004).Google Scholar
56. Wan, Q.,Li, Q.H.,Chen, Y.J.,Wang, T., Li, J.P. and Lin, C.L., Appl.Phys.Lett. 84 3654(2004).Google Scholar
57. Keem, K., B.Min, Cho, K., Sung, M.Y. and Kim, S., Appl.Phys.Lett. 84 4376(2004).Google Scholar
58. Look, D.C., Mater.Sci. Eng. B80 383 (2001).Google Scholar
59. Buyanova, I., Chen, W.M., Ivill, M., Pate, R., Norton, D.P., Pearton, S.J., Dong, J., Osinsky, A., Hertog, B., Dabiran, A. and Chow, P.P., J.Vac. Sci.Technol. Vol. 24,259, (2006).Google Scholar