Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T23:32:20.882Z Has data issue: false hasContentIssue false

Transition Metal Based Zeotypes: Inorganic Materials at the Complex Oxide – Zeolite Border

Published online by Cambridge University Press:  18 March 2011

Paul F. Henry
Affiliation:
University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Robert W. Hughes
Affiliation:
University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Mark T. Weller
Affiliation:
University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Get access

Abstract

The synthesis of compounds of the type CsAIIIMIVO4 and (Cs,Rb)AIIPO4 (AIII = Al, Ga, Fe; AII = Ni, Co, Cu; M = Si, Ge, Ti,), using gel decomposition techniques at high temperatures is described. Several new materials in this family have been characterised using powder X-ray diffraction and are shown to adopt the zeolite ABW framework topology. Evidence for the large monovalent cation templating the formation of the ABW framework is presented. Extension of the method to other AIII and MIV (A = Mn, Co, B, In; M = Sn, Zr) framework cations, which are known to adopt tetrahedral geometry in other structures, has proved unsuccessful.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barrer, R.M., White, E.A.D., J. Chem. Soc., 1267 (1951).Google Scholar
2. Kerr, I.S., Z. Kristallogr., 139, 186 (1974).Google Scholar
3. Andersen, E. Krogh, Ploug-Sørensen, G., Z. Kristallogr., 1986, 176, 67.Google Scholar
4. Norby, P., Christensen, A.N., Andersen, I.G. Krogh, Acta Chem. Scand., A40, 500 (1986).Google Scholar
5. Feng, P. Y., Bu, X. H., Tolbert, S. H., Stucky, G. D., J. Am. Chem. Soc., 119, 2497 (1997).Google Scholar
6. Kruglik, A.I., Simonov, M.A., Aleksandrov, K.S., Kristallografiya, 23, 494 (1978).Google Scholar
7. Kruglik, A.I., Simonov, M.A., Zhelezin, E.P., Belov, N.V., Dokl. Akad. Nauk. SSSR, 247, 1384 (1979).Google Scholar
8. Gatehouse, B.M., Acta Crystallogr., C45, 1674 (1989).Google Scholar
9. Nitsch, G., Schaefer, H., Z. Anorg. Allg. Chem., 417, 11 (1975).Google Scholar
10. Newsam, J. M., J. Phys. Chem., 92, 445 (1988).Google Scholar
11. Klaska, R. and Jarchow, O., Naturwiss., 60, 299 (1973) and Z. Kristallogr., 142, 225 (1975).Google Scholar
12. Anderson, M.R., Brown, I.D., Vilminot, S., Acta Crystallogr., B29, 2625 (1973).Google Scholar
13. Chung, S.J., Hahn, T., Mat. Res. Bull., 7, 1209 (1972).Google Scholar
14. Gatehouse, B.M., Acta Crystallogr., C45, 1674 (1989).Google Scholar
15. Shannon, R.D., Acta Crystallogr., A32, 751 (1976).Google Scholar
16. Werner, P.E., Eriksson, L., Westdahl, M., J. Appl. Crystallogr., 18, 367 (1985).Google Scholar
17. Larson, A.C., Dreele, R.B. Von, General Structure Analysis System, Los Alamos National Laboratory, LAUR 86-748 (1994).Google Scholar
18. Henry, P.F., Weller, M.T., Chem. Commun., 2723 (1998).Google Scholar
19. Bu, X., Feng, P., Gier, T.E., Stucky, G.D., J. Am. Chem. Soc., 120, 13389 (1998).Google Scholar
20. Hughes, E.M. and Weller, M.T., Dalton Transactions, 4, 555 (2000).Google Scholar
21. Henry, P. F., Weller, M. T. and Hughes, R. W., Inorg. Chem., 39, 5420 (2000).Google Scholar
22. Henry, P.F., Hughes, R.W., Ward, S.C. and Weller, M.T., Chem. Comm.,1959 (2000).Google Scholar