Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T02:33:07.941Z Has data issue: false hasContentIssue false

Time-Resolved Optical Studies of Picosecond Laser Interactions With Gaas Surfaces

Published online by Cambridge University Press:  26 February 2011

J.M. Liu
Affiliation:
GTE Laboratories, Incorporated, 40 Sylvan Road, Waltham, MA 02254
A.M. Malvezzi
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
N. Bloembergen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

The interactions of picosecond laser pulses at 532 nm wavelength with GaAs surfaces have been studied with time-resolved reflectivity and transmission measurements at three probe wavelengths. At fluences below the melting threshold, the laser-generated electron-hole plasma is limited to a density below ≈1020cm−3. The high reflectivities of molten GaAs observed at fluences above the tlhreshold have a wavelength dependence inconsistent with a simple Drude model for a metallic GaAs molten layer. At high fluences, the evolution of a laser-induced vapor cloud is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akhmanov, S.A., Koroteev, N.I., Paitian, G.A., Shumay, I.L., Galjantdinov, M.F., Khaibullin, I.B., and Shtyrkov, E.I., Optics Commun. 47, 202 (1983).Google Scholar
2. Aknmanov, S.A., Koroteev, N.I., Paitian, G.A., Shumay, I.L., Galjautdinov, M.F., Khaibullin, I.B., and Shtyrkov, E.I., J. Opt. Soc. Am. B2, 283 (1985).CrossRefGoogle Scholar
3. Malvezzi, A.M., Liu, J.M., and Bloembergen, M., Appl. Phys. Lett. 45, 1019 (1984).Google Scholar
4. Liu, J.M., Malvezzi, A.M., and Bloembergen, N., Mat. Res. Soc. Symp. Proc. 35, 137 (1985).Google Scholar
5. Fabricius, N., Hermes, P., Linde, D. von der, Pospieszczyk, A. and Stritzker, B., in this proceedings.Google Scholar
6. Driel, H.M. van, Lompre, L.A., and Bloembergen, N., Appl. Phys. Lett. 44, 285 (1984).CrossRefGoogle Scholar
7. Liu, J.M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 41, 643 (1982).Google Scholar
8. Lompre, L.A., Liu, J.M., Kurz, H., and Bloembergen, N., Appl Phys. Lett. 43, 168 (1983).Google Scholar
9. Blakemore, J.S., J. Appl. Phys. 53, R123 (1982).Google Scholar
10. Liu, J.M. and Malvezzi, A.M. (unpublished).Google Scholar
11. Su, C.B. and Olshansky, R., Appl Phys. Lett. 41, 833 (1982).Google Scholar
12. Glazov, V.M., Chizhevskaya, S.N., and Glagoleva, N.N., “Liquid Semiconductors” (Plenum Press, New York, 1969), Chapter 4.CrossRefGoogle Scholar