Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T19:08:04.213Z Has data issue: false hasContentIssue false

Thin Films of CoSi2 Co-Deposited onto Si1-xGexAlloys

Published online by Cambridge University Press:  03 September 2012

Peter T. Goeller
Affiliation:
Department of Materials Science, North Carolina State University, Raleigh, NC 27695
Boyan I. Boyanov
Affiliation:
Department of Physics
Dale E. Sayers
Affiliation:
Department of Physics
Robert J. Nemanich
Affiliation:
Department of Physics Department of Materials Science, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Cobalt disilicide films have been formed on strained epitaxial Si0.80Ge0.20/Si(100) alloys via co-deposition of silicon and cobalt. Co-deposition is shown to improve the epitaxy and prevent the phase segregation commonly observed with the formation of Co/SiGe contacts using other methods such as the direct deposition of cobalt onto SiGe or the sequential deposition of a silicon sacrificial layer and cobalt onto SiGe. EXAFS measurements at the cobalt K edge indicate that co-deposited films annealed at 500–700° C are indeed crystalline CoSi2 throughout this temperature range. The XRD patterns of the co-deposited films do not exhibit any of the CoSi2 (111), (220) or (311) peaks normally associated with other preparation methods. The sheet resistance and r.m.s. roughness of the CoSi2 films increase monotonically with annealing temperature. These results indicate that co-deposited films are epitaxial to the (100)-oriented SiGe substrate and suggest that low thermal budget, low resistivity contacts to strained SiGe can be grown with this method. Issues related to the presence of Ge at the CoSi2/substrate interface will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thomas, O., d’Heurle, F. M., and Delage, S., J. Mat. Res. 5, 14531461(1990).Google Scholar
2 Thompson, R. D., Tu, K. N., Angillelo, J., Delage, S. and Iyer, S. S., J. Electrochem. Soc. 135, 3161 (1988).Google Scholar
3 Ridgway, M. C., Elliman, R. G., Hauser, N., Baribeau, J.-M. and Jackman, T. E., Mat. Res. Soc. Symp. Proc. 260, 857861 (1992).Google Scholar
4 Aldrich, D. B., Chen, Y. L., Sayers, D. E., Nemanich, R. J., Ashburn, S. P., and Öztürk, M. C., J. Mater. Res. 10, 28492863 (1995).Google Scholar
5 Aldrich, D. B., d’Heurle, F. M., Sayers, D. E. and Nemanich, R. J., Phys. Rev. B53, 16297–16282(1996).Google Scholar
6 Wang, Z., Aldrich, D. B., Chen, Y. L., Sayers, D. E. and Nemanich, R. J., Thin Solid Films , 270, 555560(1995).Google Scholar
7 Wang, Z., Sayers, D. E. and Nemanich, R. J., Physica B208&209, 567568 (1995).Google Scholar
8 Wang, Z., unpublished.Google Scholar
9 Wald, F. and Michalik, J., J. Less Comm. Met. 24, 277289 (1971).Google Scholar
10 Wang, Z., Goeller, P. T., Boyanov, B. I., Sayers, D. E. and Nemanich, R. J., in Proc. XAFSIX, to be published in J. Physique. Google Scholar
11 Fernner, D. B., Biegelsen, D. K. and Bringans, R. D., J. Appl. Phys. 66, 419, (1989).Google Scholar
12 Jeon, H., Sukow, C. A., Honeycutt, J. W., Humphreys, T. P., Nemanich, R. J. and Rozgonyi, G. A., Mater. Res. Soc. Symp. Proc 181, 559 (1991).Google Scholar
13 Tung, R. T., Batstone, J. L. and Yalisove, S. M., Mater. Res. Soc. Symp. Proc. 102, 265 (1987).Google Scholar
14 Bouldin, C. E., Elam, W. T. and Furenlid, L., Physica B208&209, 190195 (1995).Google Scholar
15 Sayers, D. E. and Bunker, B. A., in X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Koningsberger, D. C. and Prins, R., Eds. (Wiley, New York, 1988) ch. 4.Google Scholar
16 Weeks, S. P., in Quick Reference Manual For Silicon Integrated Technology, Beadle, W.E., Tsai, J.C.C. and Plummer, R.D., Eds. (Wiley, New York, 1985) ch. 4.Google Scholar
18 Ying, H., Wang, Z., Aldrich, D. B., Sayers, D. E. and Nemanich, R. J., Mat. Res. Soc. Symp. Proc. 320, 335340 (1994).Google Scholar
19 Resisitivities have been compared on the basis of the nominal film thickness reported here and in Refs. ]3] and ]8].Google Scholar
20 Yalisove, S. M., Tung, R. T., and Balstone, J., Mater. Res. Soc. Symp. Proc. 116, 439 (1988).Google Scholar
21 Stalder, R., Schwartz, C., Sirringhaus, H., and von Känel, H., Surf. Sci. 271, 355375 (1992).Google Scholar
22 Goeller, P. T., Wang, Z., Sayers, D. E., Glass, J. T. and Nemanich, R. J., Mat. Res. Soc. Symp. Proc. 402, 511515(1996).Google Scholar
23 Haderbache, L., Wetzel, P., Pirri, C., Peruchetti, J. C., Bolmont, D., and Gewinner, G., Thin Solid Films 184, 317323 (1990).Google Scholar