Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-28T09:17:34.426Z Has data issue: false hasContentIssue false

Thin Films of AuCuAl Shape Memory Alloy for Use in Plasmonic Nano-actuators

Published online by Cambridge University Press:  04 February 2011

Vijay Bhatia
Affiliation:
Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia
Gordon Thorogood
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai NSW, 2234, Australia
Annette Dowd
Affiliation:
Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia
Michael B. Cortie
Affiliation:
Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia
Get access

Abstract

We describe the fabrication and structure of nanoscale thin films of β phase shape memory alloys with the nominal atomic stoichiometry Au7Cu5Al4 (corresponding to 5.8 wt% Al). These alloys possess properties that suggest they could be used in nanoscale actuators. The films described here are between 20 and 50 nm thick which is below the thickness at which some other shape memory alloys cease to transform. However, microstructural and X-ray studies confirm that the coatings still exhibit the displacive transformations that are a prerequisite for the shape memory effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wolff, I. M. and Cortie, M. B., Gold Bull. 27, 44 (1994).Google Scholar
2. Bhatia, V. K., Kealley, C. S., Dowd, A., Levey, F. C. and Cortie, M. B., Gold Bull. 42, 201 (2009).Google Scholar
3. Bhatia, V. K., Kealley, C. S., Wuhrer, R., Wallwork, K. S. and Cortie, M. B., J. Alloys Compd. 488, 100 (2010).Google Scholar
4. Fumagalli, L., Besseghini, S., Passarett, F. and Airoldi, G., J. Alloys Compd. 433, 332 (2007).Google Scholar
5. Levey, F. C., Cortie, M. B. and Cornish, L. A., J. Alloys Compd. 354, 171 (2003).Google Scholar
6. Levey, F. C., Cortie, M. B. and Cornish, L. A., Scr. Mater. 47, 95 (2002).Google Scholar
7. Battezzati, L., Fiore, G. and Massazza, M., J. Alloys Compd. 434/435, 264 (2007).Google Scholar
8. Levey, F. C., Cortie, M. B. and Cornish, L. A., Metall. Mater. Trans. A. 31, 1917 (2000).Google Scholar
9. Cortie, M. B. and Levey, F. C., Intermetallics 8, 793 (2000).Google Scholar
10. Cortie, M. B. and Levey, F. C., Intermetallics 10, 23 (2002).Google Scholar
11. Gu, Y., Jin, M. and Jin, X., Intermetallics 17, 704 (2009).Google Scholar
12. Jin, M., Liu, J. and Jin, X., Intermetallics 18, 846 (2010).Google Scholar
13. Wan, D. and Komvopoulos, K., J. Mater. Res. 20, 1606 (2005).Google Scholar
14. Fu, Y. Q. et al. ., Thin Solid Films 515, 80 (2006).Google Scholar
15. Pissuwan, D., Valenzuela, S. M. and Cortie, M. B., Trends Biotechnol. 4, 62 (2006).Google Scholar
16. Levey, F. C., Cortie, M. B. and Cornish, L. A., Metall. Mater. Trans. A. 33A, 987 (2002).Google Scholar
17. Nelson, A., J. Appl. Crystallog. 39, 273 (2006).Google Scholar
18. Levey, F. C. and Cortie, M. B., Mater. Sci. Engng A 303, 1 (2001).Google Scholar
19. Witcomb, M. J., Finnie, R. V. and Cornish, L. A., J. Mater. Sci. Lett. 16, 674 (1997).Google Scholar
20. Waitz, T., Antretter, T., Fischer, F. D. and Karnthaler, H. P., Mater. Sci. Technol. 24, 934 (2008).Google Scholar