Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T14:31:30.671Z Has data issue: false hasContentIssue false

Thickness Dependence of Vortex Pinning in Epitaxial Tl-Ca-Ba-Cu-O Thin Films

Published online by Cambridge University Press:  26 February 2011

E. L. Venturing
Affiliation:
Sandia National Laboratories, Dept. 1154, Albuquerque, NM 87185–5800
W. Y. Lee
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
B. Morosin
Affiliation:
Sandia National Laboratories, Dept. 1154, Albuquerque, NM 87185–5800
D. S. Ginley
Affiliation:
Sandia National Laboratories, Dept. 1154, Albuquerque, NM 87185–5800
Get access

Abstract

The critical current density inferred from magnetization hysteresis for epitaxial Tl2Ca2Ba2Cu3O10 films on LaAlO3 exhibits a pronounced increase with film thickness in the high-field, high-current regime. This thickness dependence does not extend to comparatively “thick” single crystals, however, suggesting that the grain boundaries play a major role in collective vortex pinning for Tl-based superconducting thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullock, D. C., Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).Google Scholar
2. Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturini, E. L., Morosin, B., Appl. Phys. Lett. 53, 406 (1988).Google Scholar
3. Kwak, J. F., Venturini, E. L., Baughman, R. J., Morosin, B., Ginley, D. S., Physica C 156, 103 (1988).Google Scholar
4. Ichikawa, Y., Adachi, H., Setsune, K., Hatta, S. -I., Hirochi, K., Wasa, K., Appl. Phys. Lett. 53, 919 (1988).Google Scholar
5. Hong, M., Liou, S. H., Bacon, D. D., Grader, G. S., Kwo, J., Kortan, A. R., Davidson, B. A., Appl. Phys. Lett 53, 2102 (1988).Google Scholar
6. Chu, M. L., Chang, H. L., Wang, C., Juang, J. Y., Uen, T. M., Gou, Y. S., Appl. Phys. Lett. 59, 1123 (1991).Google Scholar
7. Werder, D. J., Liou, S. H., Physica C 179, 430 (1991).Google Scholar
8. Kwak, J. F., Venturini, E. L., Baughman, R. J., Morosin, B., Ginley, D. S., Cryogenics 29, 291 (1989).Google Scholar
9. Barbour, J. C., Venturini, E. L., Ginley, D. S., Nucl. Instrum. Methods Phys. Res. B 59/60, 1395 (1991).Google Scholar
10. Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Beyers, R., Salem, J., Savoy, R., Vazquez, J., Appl. Phys. Lett. 60, 772 (1992).Google Scholar
11. Bean, C. P., Phys. Rev. Lett. 8, 250 (1962);Google Scholar
London, H., Phys. Lett. 6, 162 (1963).Google Scholar
12. György, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., Waszczak, J. V., Appl. Phys. Lett. 55, 283 (1989).Google Scholar
13. Kim, Y. B., Hempstead, C. F., Strnad, A. R., Phys. Rev. Lett. 9, 306 (1962);Google Scholar
Anderson, P. W., Phys. Rev. Lett. 9, 309 (1962).Google Scholar
14. Yeshurun, Y., Malozemoff, A. P., Phys. Rev. Lett. 60, 2202 (1988).Google Scholar