Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-13T16:28:43.483Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Single-Wall Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

L. Grigorian
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506–0055, lgrigor@pop.uky.edu, gamini@monica.gws.uky.edu, eklund@pop.uky-edu
G. Sumanasekera
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506–0055, lgrigor@pop.uky.edu, gamini@monica.gws.uky.edu, eklund@pop.uky-edu
P. C Eklund
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506–0055, lgrigor@pop.uky.edu, gamini@monica.gws.uky.edu, eklund@pop.uky-edu
Get access

Abstract

Results of the temperature dependence of the thermoelectric power and fourprobe resistance of single wall carbon nanotube mats are presented. The data are interpreted in terms of the response of a percolating network of metallic nanotube bundles. To the best of our knowledge, the work represents the first systematic study of the transport properties of a series of samples prepared using different transition metal-Y growth catalysts. Although x-ray diffraction and Raman scattering data indicate these samples are nominally the same, we find that the identity of the catalyst has a pronounced effect on the electrical transport properties. The data are interpreted qualitatively in terms of a dilute Kondo system involving the coupling of the the localized magnetic moments of impurity atoms (derived from the catalyst), and the conduction electron spins in the nanotube walls.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, New York), 1996.Google Scholar
2. Delaney, P., Choi, H.J., Ihm, J., Louie, S.G., and Cohen, M.L., Nature 391, 466 (1998).CrossRefGoogle Scholar
3. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C., Nature 391, 59 (1998).CrossRefGoogle Scholar
4. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).Google Scholar
5. Bethune, D.S. et al, Nature 363, 605 (1993).CrossRefGoogle Scholar
6. Journet, C. et al, Nature, 388, 756 (1997).Google Scholar
7. Thess, A. et al, Science 273, 483 (1996).CrossRefGoogle Scholar
8. Rinzler, A.G. et al, Appl. Phys. A 67, 29 (1998).CrossRefGoogle Scholar
9. Hone, J. et al., Phys. Rev. Lett. 80, 1042 (1998).CrossRefGoogle Scholar
10. Grigorian, L. et al., Phys. Rev. Lett. 80, 5560 (1998).Google Scholar
11. Fischer, J.E. et al, Phys. Rev. B 55, R4921 (1997).CrossRefGoogle Scholar
12. Kaiser, A.B., Dusberg, G. and Roth, S., Phys. Rev. B 57, 1418 (1998).CrossRefGoogle Scholar
13. Kane, C.L., Mele, E.J., Phys. Rev. Lett. 78, 1932 (1997).CrossRefGoogle Scholar
14. Eklund, P.C. and Mabatah, A.K., Rev. Sci. Instrum. 48, 775 (1977).CrossRefGoogle Scholar
15. Sumanasekera, G.U., Grigorian, L., and Eklund, P.C., submitted to Rev. Sci. Instrum.Google Scholar
16. Grigorian, L. et al., Phys. Rev. B 58, R4195 (1998).CrossRefGoogle Scholar
17. Fang, S.L. et al., to be published.Google Scholar
18. Rao, A.M. et al., Science 275, 187 (1997).CrossRefGoogle Scholar
19. MacDonald, D.K.C., Pearson, W.B., and Templeton, I.M., Proc. Roy. Soc. A 266, 161 (1962).Google Scholar
20. Gold, A.V., MacDonald, D.K.C., Pearson, W.B., and Templeton, I.M., Phil. Mag. 5, 765 (1960).CrossRefGoogle Scholar
21. Barnard, R.D., Thermoelectricity in Metals and Alloys (Taylor & Francis Ltd, London, UK) 1972.Google Scholar
22. Mahan, G.D., in Solid State Physics, Eds.Ehrenreich, H., Spaepen, F. (Academic Press, New York), 1997.Google Scholar