Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-24T20:49:28.218Z Has data issue: false hasContentIssue false

Thermodynamics and Diffusion of Free Trions in Mixed Type GaAs/AlAs Quantum Wells

Published online by Cambridge University Press:  10 February 2011

H. W. Yoon
Affiliation:
Dept. of Physics, Dartmouth Col]ege, Hanover, N.H. 03755
Arza Ron
Affiliation:
Technion, Haifa, Israel
M. D. Sturge
Affiliation:
Dept. of Physics, Dartmouth Col]ege, Hanover, N.H. 03755
L. N. Pfeiffer
Affiliation:
AT&T Bell Laboratory, Murray Hill, N.J. 07974
Get access

Abstract

An emission line which depends on the simultaneous presence of excitons and < 2×1010 cm−2 free photoexcited electrons in a 20 nm quantum well is shown to be due to the recombination of free negatively charged excitons ( “trions”). The binding energy is 1.3 meV and the lifetime is 1/4 that of the exciton. The increase in the radiative decay times of excitons and trions with increasing bath temperature is consistent with that of free particles. More directly, from time- and spatially-resolved measurements, we find that trions are localized at 5 K, and with increasing bath temperature both excitons and trions become mobile. The diffusivity of trions and excitons increases linearly with bath temperature, and at 10 K, the trion diffusivity is found to be factor of two lower than the exciton diffusivity. Our results are the first direct experimental evidence for free trions in GaAs quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shields, A.J., Pepper, M., Ritchie, D.A., Simmons, M.Y., and Jones, G.A.C., Phys. Rev. B. 51, 18049 (1995).Google Scholar
2 Buhmann, H., Mansouri, L., Wang, J., Beton, P.H., Mori, N., Eaves, L., Henini, M., Potemski, M., Phys. Rev. B. 51, 7969 (1995).Google Scholar
3 Finkelstein, Gleb, Shtrikman, Hadas, and Bar-Joseph, Israel, Phys. Rev. Lett. 74, 976 (1995).Google Scholar
4 Feldmann, J., Preis, M., Gobel, E.O., Dawson, P., Foxon, C.T., Galbraith, I., Solid State Communications 83, 245 (1992).Google Scholar
5 Galbraith, I., Dawson, P., Foxon, C.T., Phys. Rev. B. 45, 13499 (1992).Google Scholar
6 Yoon, H.W., Wake, D.R., Wolfe, J.P., and Morkoq, H., Phys. Rev. B. 46, 13461 (1992).Google Scholar
7 Ron, Arza, Yoon, H.W., Sturge, M.D., Manassen, A., Cohen, E., Pfeiffer, L.N., accepted for publication in Solid State Cummunications, (1995).Google Scholar
8 See, e.g. Seeger, K., Semiconductor Physics (Springer-Verlag, Berlin, 1991), p. 410.Google Scholar
9 Feldmann, J., Peter, G., Göbel, E.O., Dawson, P., Moore, K., Foxon, C., and Elliot, R.J., Phys. Rev. Lett. 59, 2337 (1987). and D. Citrin, Phys. Rev. B. 47, 3832 (1993).Google Scholar
10 Kim, J.C., Wake, D.R., Wolfe, J.P., Phys. Rev. B. 50, 15099 (1994).Google Scholar
11 Bastard, G., Delalande, C., Meynadier, M.H., Frijlink, P.M., and Voos, M., Phys. Rev. B. 29, 7042 (1984).Google Scholar
12 Yoon, H.W., Wake, D.R., Wolfe, J.P., Salvador, A., Morkoq, H., Phys. Rev. B. 51, 17689 (1995).Google Scholar