Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T00:13:36.519Z Has data issue: false hasContentIssue false

Thermodynamic Stability of Actinide Pyrochlore Minerals in Deep Geologic Repository Environments

Published online by Cambridge University Press:  10 February 2011

Yifeng Wang
Affiliation:
Sandia National Laboratories, 4100 National Parks Highway, Carlsbad, New Mexico88220. E-mail: ywang@sandia.gov
Huifang Xu
Affiliation:
Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico87131. E-mail: hfxu@unm.edu
Get access

Abstract

Crystalline phases of pyrochlore (e.g., CaPuTi2O7, CaUTi2O7) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, we use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi2O7). The Pu-pyrochlore phase is predicted to be stable with respect to PuO2, CaTiO3, and TiO2 at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. We suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevents actinide release from these mineral phases

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Dosch, R. G., Headley, T. J., Northrup, C. J., and Hlava, P. F., Sandia National Laboratories Report, Sandia 822980 (1982).Google Scholar
2 Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., Synroc. In Lutze, W. and Ewing, R. C. eds., “Radioactive Waste Forms for the Future.North-Holland, Amsterdam, 1988, p. 233 (1988).Google Scholar
3 Vance, E. R., MRS Bulletin, vol. XIX, p. 28 (1994).Google Scholar
4 Sverjensky, D. A., and Molling, P. A. Nature, 358, 310 (1992).Google Scholar
5 Xu, H., and Wang, Y. J. Nucl. Mater., 275, 216 (1999).Google Scholar
6 Xu, H., Wang, Y., and Barton, L. J. Nucl. Mater., 273, 343 (1999).Google Scholar
7 Xu, H., and Wang, Y. Radiochim. Acta, in press (1999).Google Scholar
8 Putnam, R. L., Navrotsky, A., Woodfield, B. F., Shapiro, J. L., Stevens, R., and Boerio-Goates, J. In Wronkiewicz, David ed. “Scientific Basis for Nuclear Waste Management XXII,” in press (1999).Google Scholar
9 Putnam, R. L., Navrotsky, A., Woodfield, B. F., Boerio-Goates, J., and Shapiro, J. L. J. Chem. Thermodynamics, 31, 3, 229 (1999).Google Scholar
10 Berman, R. G. J. Petrology, 29, 445 (1988).Google Scholar
11 Robie, R. and Hemingway, B. S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascal) Pressure and at Higher Temperatures. U. S. Geological Survey Bulletin, No. 2131, 461 pp. (1992).Google Scholar
12 Xu, H., and Wang, Y. In “Radioactive Waste Management and Environmental Remediation-ICEM99,” (in press) (1999).Google Scholar
13 Putnam, R. L. Personal communication (1999).Google Scholar
14 Wolery, T. J. EQ3/6, A Software Package for Geochemical Modeling of Aqueous Systems (Version 7.0), Lawrence Livermore National Laboratory, UCRL-MA-110662 PT 1-4 (1992).Google Scholar
15 Nesbitt, H. W., Bancroft, G. M., Fyfe, W. S., Karkhanis, S. N., and Nishijima, A. Nature, 289, p. 358362 (1981).Google Scholar